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1. INTRODUCTION 
 
The introduction of airborne LiDAR (Light Detection and Ranging) in the late 
nineties was followed by a quick proliferation of the technology, and LiDAR is now 
the primary surface data extraction mapping technique. This remarkable success is 
mainly due to the fact that LiDAR data are explicit and the processing can be highly 
automated. Consequently, almost no human intervention is required and the 
turnaround time is very short. The quality of the LIDAR product is excellent as 
compared to most of the surface datasets collected in the past. These factors largely 
contributed to the fast market acceptance of the LiDAR technology.  
 
Early production experiences for most users, however, usually show similar patterns 
and bring up comparable questions. The two most widely discussed topics in this 
regard are the horizontal accuracy and the desire to further improve the vertical 
accuracy. In addition, users generally lack the availability of powerful and user-
friendly standardized and widely used software packages; something typical to the 
conventional large-format aerial camera-based photogrammetry market. This is due to 
the relative newness of the LiDAR technology, although there are already a few 
emerging products, such as TerraScan and GeoQue, which are expected to fill the 
current gap. Therefore, users with stronger in-house R&D capabilities frequently 
develop their own LiDAR data processing utilities. 
 
The horizontal accuracy of the LiDAR data was not a concern in the early use of this 
technology. The fact that unprecedented vertical accuracy could be obtained relatively 
easily satisfied the mapping market for a while. In addition, the applications that 
fueled the LiDAR technology, such as telecommunications, did not even require the 
accuracy that was achievable with those early systems. In mapping, orthophoto 
production was the primary beneficiary of the surface data provided by the new 
sensor and the requirements for accuracy were not that stringent. The introduction of 
the LiDAR data created a few quality control and even service/product contracting 
issues. To address these subjects, the American Society of Photogrammetry and 
Remote Sensing (ASPRS) initiated an effort to create a recommendation document on 
LiDAR data, which interestingly dealt with the vertical accuracy (ASPRS, 2004); new 
ongoing efforts include the horizontal accuracy too. 
 
As the LiDAR market started to grow rapidly, LiDAR vendors could invest more into 
development, and soon LiDAR systems showed truly phenomenal performance 
improvements. In less than five years, the pulse rate improved by an order and now 
100 and 150 kHz systems are available (Optech, 2006 and Leica, 2006). More 
importantly, the ranging accuracy for hard surfaces has increased substantially and 
now stands close to the level of static GPS surveys, i.e., 1-2 cm, and it is almost 
insignificant to the navigation error budget. In parallel to these developments, users’ 
expectations started to grow; the target vertical accuracy for demanding LiDAR 
products started to shift from the one foot level to the sub-dm range. The performance 
of the newer LiDAR systems, combined with better operational techniques, opened 
the door toward applications where large-scale or engineering-scale accuracy are 
required. At this point the georeferencing error budget and, to a lesser extent, the 
sensor calibration quality, are critical to achieving design level accuracy (few cm). 
Using ground control is an effective way to compensate for georeferencing and sensor 
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modeling errors. In addition, ground control can provide for independent and highly 
reliable QA/QC processes. Unfortunately, ground control can be costly, and may 
present hazard to the field crew in particular, within the transportation network. 
 
The Office of Aerial Engineering (OAE) has been using an Optech 30/70 ALTM 
airborne LiDAR system for about four years. The introduction of LiDAR technology 
was a major development towards improving the mapping operations, and the overall 
experiences are excellent, as evidenced by numerous projects, where highly accurate 
surface data were produced in an unprecedentedly short time. Similar to the pattern of 
other users, during the learning period of the new technology, OAE has identified 
areas for improvements in terms of achieving better accuracy and increasing data 
processing efficiency. In particular, the following topics required immediate attention: 
 

 To perform a strip adjustment for seamless integration of strips into the final 
product. Due to navigation solution and sensor calibration anomalies, the 
surface points in the strip overlap area may differ more than the vertical 
accuracy range would allow for. 

 To improve the horizontal accuracy in order to better characterize the final 
product; i.e., to provide a measure for the horizontal accuracy similar to the 
vertical parameters. 

 To improve accuracy (both horizontal and vertical), use ground control that is 
less labor-intense, requires no or limited surveying and imposes less 
restrictions in normal field operations. 

 
LiDAR-specific ground targets developed by the OSU team in an earlier research 
project fulfilled the expectation of improving both horizontal and vertical accuracy, as 
well as providing effective technique for strip adjustment, product characterization, 
and, in general, for QA/QC. The implementation and operational resources needed, in 
terms of labor and time constraints imposed on target deployment, however, 
represented substantial cost, which is generally not available for all the projects OAE 
executes. Therefore, improvements are needed to reduce the requirements for using 
ground control. The most obvious extension of the LiDAR target concept introduced 
earlier was to use existing natural or man-made targets such as reflective pavement 
markings instead of the deployable LiDAR-specific ones. 
 
The ultimate objective of this research project was to advance the earlier developed 
LiDAR-specific ground control-based LiDAR data accuracy improvement technique 
by including existing natural and man-made objects as targets, in particular using 
pavement markings, and extending the methodology for handling both types of targets 
in a highly automated way. Obviously, the total elimination of the deployable targets 
was the desirable long-term research objective. The extended method is expected to 
support ODOT’s urgent production needs by providing a joint solution for strip 
adjustment, horizontal and vertical products accuracy characterization, and for 
improved QA/QC process. 
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2. RESEARCH OBJECTIVES 
 
The primary objectives of this research project were as follows: 
 

1. Studying the reflective patterns of objects typically found along road 
corridors. In particular, road pavement markings and any objects that may 
have good/distinct reflective characteristics are of interest. The result of this 
task is a set of objects with good identification potential from LiDAR data. 

2. Developing algorithms to automatically identify/extract features/objects from 
the LiDAR intensity data. A high-level of automation is expected and the false 
positive rate will be minimized to assure high success rates of the following 
processes. In addition, the user would be able to select the area(s) of interest 
using a polygon to define the limits of each area of interest.  

3. Developing methods to create best fit lines/curves through the identified 
features within the selected areas. The “best fit” lines/curves should be 
centered within the feature such as an edge line pavement marking.   

4. Performing a comparison of the control points to the “best fit” line through the 
identified features. Calculate and report the perpendicular distance from the 
“best fit” line/curve to the control point, the difference in X, Y directions as 
well as related statistical information summarized for each control point, all 
control points within an area, and all control points contained within a project. 

5. Using past and new data from the OAE LiDAR database, extensive tests will 
be performed to assess both the algorithmic performance and the correctness 
of the original object selection.  The algorithms will be refined and the object 
set could be modified as needed. 

6. Investigating the feasibility of extracting image primitives from LiDAR data, 
including primarily point and linear features. A model library of the primitives 
will be created; for example, a library of various reflective features, including 
both radiometric and geometrical description. 

7. Developing methods to automatically parameterize objects extracted in (2) and 
(3) to make their description compatible with the model library of (6). If 
needed, a parameter optimization will be performed to remove functional 
correlation of the input parameters. 

8. Developing matching technique to match extracted objects with the model 
library. Once a match is found, the reference location will be determined with 
high accuracy. This is similar to deriving the center point coordinate of 
LiDAR specific targets.  

9. Extension of the existing LiDAR data correction method to handle the new 
“target” objects. We expect to keep the existing user interface of the 
adjustment program and to provide the well-received interactive diagnostic 
tools for both types of targets.  

10. Investigating optimal target density and their geometrical distribution. Based 
on the results, a test flight will be arranged to validate the suggested spacing 
and location characteristics in the model. After the data analysis is complete, 
the parameters will be adjusted if needed. In addition, the results are expected 
to provide a performance metrics for spacing and point distribution for any 
given accuracy requirement. 
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11. Identifying the discrepancies between strips can be corrected in two 
fundamental ways: either by applying separate corrections to each strip or by 
adjusting the sensor boresight misalignment; basically the heading, roll, and 
pitch parameters of the LiDAR sensor with respect to the navigation frame. 
First, methods to adjust individual LiDAR strips or a set of strips as a group 
horizontally will be developed. While the this method always provides an 
improvement, provided the strip difference observations are correct, the 
boresight misalignment approach for correcting strip discrepancies only works 
if boresight errors exist (the parameters do not reflect the actual spatial 
relationship). An automated process will be developed to detect the existence 
of boresight misalignment error, and, if needed, to apply it before the 
individual strip corrections. 

12. Depending on data availability and/or ODOT OAE direction, the performance 
of the method will be analyzed with respect to various sensor configurations, 
including flying height, pulse rate, scan rate, field of view, side overlap, etc. 

13. Preparing detailed report, operation workflow, and user manual for the 
developed algorithms and software utilities. 

 
 
3. GENERAL DESCRIPTION OF RESEARCH 
 
3.1 LiDAR Strip Adjustments 
 
The primary objective of LiDAR strip adjustment (Shan and Toth, 2008) is to provide 
quality assurance and quality control (QA/QC) for the final geospatial product by 
reducing, or ultimately eliminating, discrepancies found in strip overlap areas, and 
thus create a seamless product. Ideally, there should be no visible or measurable 
differences between overlapping LiDAR strips, except for sensor noise, mainly 
caused by varying performance of the georeferencing component. However, strip 
differences frequently occur. The extent is significantly smaller nowadays than it was 
when the first generation of commercial LiDAR systems was introduced. At that time, 
only the vertical accuracy of the LiDAR data was specified and no reference was 
provided for horizontal precision, consequently strip adjustment was aimed at 
removing only the height differences. Motivated primarily by the generation of DEMs, 
the first guidelines to report on LiDAR data quality were only concerned with the 
vertical accuracy (ASPRS, 2004), but by now, horizontal precision evaluation is part 
of the process. Strip discrepancies typically show a systematic pattern that provides a 
basis to model them and subsequently correct them in a strip adjustment process. The 
differences between various LiDAR strips acquired over the same area are more 
visible in areas that are rich in objects of simpler geometric shapes, such as man-made 
objects, like buildings, as shown in Fig. 1; the strip overlap is depicted in Fig. 2. 
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Figure 1. Strip discrepancies observed from four strips. 

 
LiDAR data are collected in strips. In applications, where a rectangular block or 
corridor is flown in a parallel line pattern, minimal overlap between neighboring 
strips is typically required to maintain contiguous coverage of the ground. The 
required margin can vary considerably, although the extent of overlap typically falls 
in the 10% to 30% range. The amount of variation between strips depends on the 
flight situation, including flight planning/control, weather conditions, and terrain 
undulation. Many strip adjustment techniques are based on sensor parameter 
calibration, and therefore to better support these processes, cross strips are also 
frequently flown. The reliability of earlier sensor systems necessitated frequent sensor 
calibration, which required additional dedicated data collection, such as flying cross-
strips over an airport or parking areas before and after the survey, resulting in multiple 
overlap data. 
 

 
Figure 2. Multiple strip overlap (cross-strips at different flying height); square marks 

building area shown in Fig 1. 
 
LiDAR users recognized very early the advantage of strip overlap and methods were 
developed to assess the discrepancies between strips, and then apply corrections to the 
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data. Early developments in strip adjustment techniques were further influenced by 
other factors, such as the LiDAR point density. In the late 1990s, the LiDAR point 
density was modest compared to current systems. The pulse rate (10 kHz PRF) was an 
order of magnitude less than that of current state-of-the-art systems (100 kHz PRF), 
so one approach to increase point density was to fly larger overlaps, say 50%, which 
essentially provided double coverage of the surveyed area (i.e., doubling the effective 
point density).  
 
The general concept of the LiDAR strip adjustment process is simple: first, 
differences should be identified and measured between two overlapping strips, and 
then, using a geometric model, the parameters of a suitable transformation must be 
determined that can be subsequently applied to correct/adjust the strips. Unfortunately, 
the implementation of strip adjustment is not straightforward, as establishing the 
required correspondence between two strips is rather difficult. This difficulty comes 
primarily from the irregular distribution of points in the LiDAR point cloud, which 
means that the same object space is randomly sampled in the spatial domain in every 
strip, and thus, there are no conjugate points between the two point clouds (even if 
there were observations of the same object from different strips, they would not be 
recognized as such, because LiDAR points have no identifiers). Therefore, either 
interpolation of data is needed (e.g., conversion to a common grid), or shape-based 
techniques (based on features extracted from a group of points) should be used instead 
of conventional point-based methods.  
 
The complexity of the object space, including terrain undulation with additional 
natural and man-made objects, has a significant effect on the process of finding 
matching primitives in the two point clouds. If the object space (terrain) variations are 
large, the spatial spectrum of the object space has high spatial frequency components, 
and thus the LiDAR point density is most likely not sufficient to meet the Nyquist 
criterion, and consequently, the point cloud in this case is not adequate to fully 
describe the object space, making the correspondence problem an ill-posed one. 
 
LiDAR systems have undergone remarkable developments since their introduction in 
the late-1990s and the development of the first strip adjustment techniques. The laser 
ranging accuracy for hard surfaces has approached the static surveying accuracy, 
about 1-2 cm (1), and the use of multiple returns, the intensity signal have become 
wide-spread, and multi-pulse systems have been introduced recently. More 
importantly has increased by an orders of magnitude, allowing for better spatial 
sampling and improved object space reconstruction. Developments in the 
georeferencing component of LiDAR systems are also significant as the navigation 
solution is currently the most significant term in the overall LiDAR error budget. 
Typical topographic LiDAR surveys provide point densities in the 2-5 pts/m2 range, 
although for some applications, such as helicopter-based transmission line surveys, 
20+ pts/m2 densities are reported. Note that the along and across spatial sampling 
rates vary depending on the scanning mechanism used in the LiDAR system and the 
scanning parameter controls; although the parameter settings are generally optimized 
for approximately even spatial sampling.  
 
LiDAR strip adjustment methods have evolved over time, and there is a variety of 
algorithmic approaches and techniques customized to specific conditions. From a 
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conceptual point of view, the strip adjustment methods can be categorized based on 
several not totally independent characteristics, with the most important one is whether 
it is based on co-registration or calibration, as the strip discrepancies can be 
eliminated/reduced either by applying an adequate transformation to the LiDAR strips 
or by introducing a correction to the sensor parameters, and then recreating the 
LiDAR point cloud from corrected sensor data. Conceptually, the strip adjustment 
methods fall into two categories. The techniques in the first group are a type of 
rubber-sheeting co-registration solution, which tries to minimize the differences 
between strips for a given transformation model; this technique is also called “data 
driven,” as it is not based on a physical model and is focused only on removing the 
discrepancies between strips. In contrast, the second approach is concerned with the 
source of the errors and aims to reduce the strip discrepancies by modifying/adjusting 
the parameters of the sensor models and/or sensor orientation, thus basically 
implements an in situ calibration of the multi-sensor system. The boresight calibration 
of LiDAR sensors is the most frequently used approach if sensor model-based strip 
adjustment is performed. This project is focused on a data-driven solution and no 
attempt was directed to use the measured discrepancies to model sensor/boresight 
errors although it is possible. 
 
3.2 Coordination of concept development and implementation  
 
To exploit research results in practice is always a challenge, as there is the usual gap 
between a research prototype system and a commercial product. Obviously, the 
ODOT OAE needs products, as it is primarily a production environment. Therefore, 
various implementation options were considered at the beginning of the project, and 
the decision was made to integrate the expected research results into the GeoCue 
product, which is the workhorse of LiDAR project management in the OAE. This 
solution has several advantages such as it clearly separates the algorithmic design and 
the user interface, provides the usual interface to the operator, and ultimately requires 
the least effort in system development costs. 
 
Shortly after the official project start, frequent interactions with ODOT personnel as 
well as with GeoCue Corporation took place with discussions focused on the 
integration of the research results into ODOT OAE processing workflow through the 
GeoCue product. After the preparations reached the required level, a project 
coordination meeting was held at the Center for Mapping, OSU, on April 12, 2007,; 
the persons attending were John Ray, Jeff Syar and Rachel Lewis from ODOT; Lewis 
Graham and Derek Morris from GeoCue Corporation, Chris Gard from TEC, and Dr. 
Charles Toth and Eva Paska from OSU. The technical content of the discussion was 
on the development of the interface concept and its implementation. As the main 
outcome of this productive meeting was the release of Version 3.0 of the LIDAR 
Featuring Matching & Adjustment System (FMAS). As a follow-up, during the 
ASPRS Annual Conference in Tampa, FL, May 7-11, 2007, John Ray, Lewis Graham, 
Charles Toth and Eva Paska had several informal discussions on the project 
component that is related to the GoeCue interface and on the development of a new 
XML data passing protocol. There were several discussions between ODOT and OSU 
personnel, the most important one was on August 2, 2007, when several important 
questions were clarified at the project meeting at The Center for Mapping, OSU, with 
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John Ray and Jeff Syar from ODOT, and Dr. Charles Toth and Eva Paska from OSU 
attending. 
 
To support algorithmic research and system developments, a test dataset was acquired 
on May 11, 2007, including LiDAR data flown by ODOT OAE over a small town and 
country roads. The dataset included GPS VRS-surveyed pavement markings data for 
several intersections and other areas of interest. The availability of this dataset was 
essential during the course of this project, as it satisfied most of the project needs; in 
fact, there was no need for additional test flights. 
 
 
3.3 Research Developments to Support OAE LiDAR Operations 
 
The accomplished research tasks were primarily concerned with the development of 
introducing manual and automated pavement markings measurements in the GeoCue 
environment to improve horizontal strip adjustment performance as well as QA/QC 
processes, and thus, to support the LiDAR-based map production system to achieve 
the accuracy requirements required by the specifics of OAE operations. The 
algorithmic developments, techniques researched, and programs developed are 
discussed in the Results section.  
 
 
4. RESULTS 
 
The foundation behind the idea of using pavement markings as ground control to 
support the QA/QC of LiDAR data rests on two main conditions. First, the general 
availability of the LiDAR intensity signal, which is essential to extract location 
information over relatively flat surfaces, should be mentioned. Second, a technology 
is required to quickly measure pavement markings at good accuracy, which is safe for 
the crew and present limited hazard with respect to traffic.  
 
The introduction of airborne LiDAR in the late nineties was followed by a quick 
proliferation of the technology, and LiDAR became the primary surface data 
extraction mapping technique. Yet, the general availability of the intensity signal is a 
rather recent development. The primary driving motivation for using intensity signals 
in the LiDAR production is simply the fact that the intensity data provides a quite 
good visualization tool, which was in a way missed for a long time by users who 
always wanted to see what was behind the point cloud (this was reason while video 
and small format cameras have been accompanying LiDAR sensors from the very 
beginning). Fig. 3 shows a comparison between optical imagery and LiDAR intensity 
and elevation data. It must be noted that the use of the intensity signal for feature 
extraction has been limited primarily for research, as the intensity signal is a relative 
measurement, which is quite different from the explicitness of the LiDAR range data, 
and thus the automated processing present more challenges. 
 
Concerning the pavement marking measurements, the rapidly broadening use of real-
time GPS correction services, based on the use of the CORS network, provides the 
necessary infrastructure to perform the survey of pavement markings in a quick and 
accurate manner. Practically, the 10-20 m stretches of road pavement markings can be 
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accomplished in a few minutes. 
 
This work proposes a method to use road pavement markings as ground control to 
assess the quality of the LiDAR data as well as to improve the point cloud accuracy 
by post-processing. The idea behind using pavement markings is that they are widely 
available on the road network, albeit quality may vary at a larger scale. Their spatial 
distribution is nearly optimal as they are used nearly evenly on the road surface. 
Equally importantly, road pavement markings have distinct reflective characteristics 
relative to the road pavement, which is essential from the feature extraction 
perspective, as the LiDAR elevation data is identical for the road surface regardless 
whether it is painted or not. Figs. 4.x a-c show simultaneously acquired digital 
orthorectified image, LiDAR intensity and LiDAR elevation image, respectively, of 
an intersection. The LiDAR point density was about 4 pts/m2 with a foot print size of 
15 cm. The pavement markings in the LiDAR intensity image are quite visible and 
distinct from the pavement. Note that LiDAR intensity image is rather inferior in 
quality with respect to the optical imagery. Clearly, the affect of coarser sampling and 
the larger footprint is quite noticeable. Nevertheless, the extraction of pavement 
markings seems to be feasible and thus they can be used as ground controls, provided 
they are surveyed, and consequently can support the QA/QC processes of the LiDAR 
data themselves. Note that this approach can improve both horizontal and vertical 
accuracy of the LiDAR data, and provide for the first time a measure of the horizontal 
accuracy. As a result, it enables to evaluate the horizontal accuracy of LiDAR data as 
well as quantify the horizontal and vertical product accuracies.  
 

(a) 

Stop bar Curved edge

Straight edge
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(b) 

(c) 
 

Figure 3. Pavement markings at an intersection in various sensor data; (a) 4k by 4k 
digital image (orthorectified), (b) LiDAR intensity (gridded), and (c) LiDAR 

elevation (gridded). 
 
In summary, the proposed method based on using reflective pavement markings 
instead of the deployable LiDAR-specific targets offers the same accuracy 
performance potential but it is less expensive, there is no need for deployment of 
sizeable targets around the road, the surveying requirements are simpler, as 
measurement of the road surface is easier and faster compared to the elevated targets, 
and the risk for the crew is consequently much lower. A clear advantage of the 
pavement markings is that they can be reused in subsequent mapping missions, as 
long as their quality allows for it; in time, the pavement markings wear out due to 
traffic and weather.  In addition, the availability of the pavement marking positions 
can significantly improve the traffic flow extraction processes, as it accurately 
confines the search space. Furthermore, based on the measurement of the pavement 
markings at the road edges, can be used to extract the lane separator pavement 
markings, as their geometry is closely known, so again using the LiDAR intensity 
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data they can be extracted with high success rate. This, in turn, enables for better 
vehicles extraction on a lane bases, which can provide for better traffic flow patterns. 
 
The scientific progress has been continuously documented in journal papers and 
conference proceeding papers. All the relevant and related papers are included in 
Appendix A. In addition, a presentation given at the last ELGR Summer meeting is 
included in Appendix B, as it provides an overview of the final phase of the project. 
 
4.1 Curve fitting 
 
The pavement markings can be either surveyed by GPS, such as using the ODOT 
VRS system, or measured from LiDAR data on a workstation. In both cases, shape of 
the pavement markings is sampled at random distances; the distance between the 
sampled points varies. For these sample points, the geometry of the pavement 
markings should be reconstructed for processing and visualization. While it is not a 
difficult task in general, the universal nature of the pavement markings, such as that 
could be of any shape and in any combinations, requires the use of piecewise curve 
fitting methods. Note that the curve fitting method is essential for both operator-based 
and manual measurements. 
 
The primary purpose of the curve fitting process is to reconstruct the shape of the 
pavement markings, which can be equally applied to automatically extracted LiDAR 
points as well as to the reference points obtained by GPS surveying. Of course, there 
is a significant difference in the two representations, as the reference points are quite 
accurate, in fact, they can be considered almost error-free if compared to the 
horizontal accuracy of the LiDAR points. In addition, their sampling is probably 
adequate to properly describe the shape as the surveyors know quite well what point 
density is required for proper representation of linear features. In contrast, the 
pavement marking points extracted from LiDAR are distributed over a larger range in 
both directions, along and across the pavement marking centerline. Therefore, finding 
a curve that represents an optimal fit in some terms is a challenge. The higher 
sampling rate (LiDAR point density) has a positive impact on the curve fitting process, 
as better error cancellation can be expected. The section describes the curve fitting 
method that was developed based on the original concept introduced in (Ichida and 
Kiyono, 1977). The technique (basic idea) was adopted, modified and extended to the 
specifics of the LiDAR point cloud and control points. The fitted curve can be 
described both analytically and numerically, such as a dense polyline representation, 
which could provide for performance advantages in certain implementations. 
 

Introduction of a local coordinate system 
 
The shape defined by the extracted LiDAR points of the pavement markings should 
be modeled as linear features in order to be matched with their controls; the most 
generic format is a 3D curve. The selected method to create best fit lines/curves 
through the extracted LiDAR points is a piecewise weighted least squares curve 
fitting based on cubic (third-order polynomial) model, which seemed to be adequate 
for our conditions, based on a priori experimental results. In the following, the 2D 
case will be discussed, although the implementation is based on the full 3D model. To 
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handle any kind of curves, defined as the locus of points f(x, y) = 0 where f(x, y) is a 
polynomial, the curve fitting is performed for smaller segments in local coordinate 
systems, which are defined by the end points of the curve segments. The primary 
advantage of using a local coordinate system is to avoid problems when curves 
become vertical in the mapping coordinate system, i.e., when there are more than one 
y values for an x value. Fig. 4 shows the concept of the local coordinate system used 
for curve fitting. The fitting results as well as the fitting constraints are always 
converted forth and back between the local and mapping coordinate frames. In the 
following, the core curve fitting for a single segment in a local coordinate system is 
discussed. 

 

 
Figure 4. The curve fitting is done in local coordinate systems, with varying length 

segments defined on basis that it has only limited curvature; the local coordinate 
system is oriented to main direction of the segment. 

 
The notation used to describe the main steps of the piecewise cubic fitting (PCF) 
process is introduced in Fig. 5. To achieve a smooth curve, the curve fitting to any 
segment is constrained by enforcing identical slope of the curves’ tangent at the 
segment connection points; in other words, the PCF polynomials are continuous with 
their first derivatives at the connection points, such as x=s, x=t, etc. Eqns. (1) and (2) 
describe the third-order polynomial, with the constant, 1st, 2nd, and 3rd-order terms, ck, 
dk, ak and bk, respectively, and its first derivative for curve Sk, placing the coordinate 
system’s origin to the connection point s: 
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The constant and the 1st-order term of the third-order polynomial are equal to the 
value of the curve, yS, at the origin, as well as the slope of the curve’s tangent at the 
origin, respectively. As the curve’s value and slope are kept fixed at the connection 
points, when computing the coefficients of the third-order polynomial piece, only the 
2nd and 3rd order terms are the unknowns in the least squares adjustment, and the 
constant and 1st-order terms are treated as constant (non-random) variables or fixed 
constraints, except for the first segment, when all the coefficients are treated as 
unknown values.  
 

re-draw 

Fig. 4.x. Piecewise weighted least squares curve fitting method. 

 

The computation of the piecewise curve fitting includes the following steps:  

1)  aS and bS, the coefficients of the second and third order terms of the curve Sk are 

estimated; the constant term (yS) and the coefficient of the first order term (mS) are 

considered fixed, as they are known from the curve fitting from the previous segment. 

In the adjustment, the points in interval (Δi1+ , i+Δi2)k (past, present, and future data 

points) are used. The fitted curve is employed for interval i. 

2) The value (yt) and the slope (mt) of the fitted curve are computed at x=t (the next 

connection point); these values as fixed constraints are used in the curve fitting for the 

next segment. 

3)  Step 1 is repeated to process the next segment.  

 

Figure 5. Piecewise weighted least squares curve fitting method. 
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When the orientation of the subsequent local coordinate system is different from the 
previous one, the constraints (value and slope) at the connection point need to be 
computed into the new system. Fig. 6 shows the notation used in the computation, 
described by Eq. (3) and the transformation between local and global frames is 
defined by Eq. (4). 

 
Figure 6. Transfer of slope at connection points. 

 

pimwhere

m

/180*)(atan   

)tan()tan(

11

0201122







 (3) 

Where 

m1 The slope of the curve’s tangent at the connection point in the local 
coordinate system 1 

m2 The slope of the curve’s tangent at the connection point in the local 
coordinate system 2 

1 The angle between the curve’s tangent and the x axis of the local coordinate 
system 1 

2 The angle between the curve’s tangent and the x axis of the local coordinate 
system 2 

01 The angle between the axises of local coordinate system 1 and the mapping 

Mapping frame

Local 
coordinate

Local 
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frame 
02 The angle between the axises of local coordinate system 2 and the mapping 

frame 
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 (4) 

Where 

X0 The coordinates of the fitted curve at the connection point in the mapping 
frame 

X1 The coordinates of the fitted curve at the connection point in local coordinate 
system 1 

X2 The coordinates of the fitted curve at the connection point in local coordinate 
system 2 

T 01 The translation in the mapping frame between the origins of the mapping 
frame and local coordinate system 1 

T 02 The translation in the mapping frame between the origins of the mapping 
frame and local coordinate system 2 

 
The discussion so far has considered all the LiDAR points with the same weight, 
which ignores the possible differences among the LiDAR points. While this model 
provides good results in most cases, improvements can be expected if the LiDAR 
points are weighted according to their location with respect to the pavement marking. 
For example, there is quite a difference in shape between a regular lane pavement 
marking and a stop bar, as the second one has a larger width that is comparable to its 
length, consequently, the estimation of the two lines could be quite different. The 
answer to the question on what basis the LiDAR points can be weighted is the 
intensity value. As shown in Fig. 7, with varying overlap between the pavement 
marking and the LiDAR point footprint, the intensity value is somewhat proportional, 
as it was discussed earlier. Using the intensity value as a weight allows for better line 
extraction as shown in Fig. 8. The simplest way is to use the reciprocal of the intensity, 
or a somewhat more non-linear mapping function. Note if the pavement marking is 
long enough, not the case of the stop bar, then there is a statistically good distribution 
of the intensity values as well as good spatial distribution, and therefore the intensity-
weighted and not weighted solutions will be similar. 
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Figure 7. Weight based on intensty values. 
 

 

 
 

Figure 8. Curve fitting to LiDAR and control points. 
 
The curve fitting described in this session has been implemented in Matlab. The 
results obtained from applying it to a variety of pavement markings samples including 
both LiDAR extracted and reference points have indicated a good performance in 
terms of robustness and accuracy. 
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4.2 Curve Matching 
 
Various matching techniques were considered for matching the different 
representations of pavement markings, before the Iterative Closest Point (ICP) 
algorithm was selected. The primary reason for ICP was the fact that it does not 
require any point correspondence and its robustness. Using the polyline curve 
representation of the curve fitting results, the ICP matching of free-form curves can be 
directly applied; the two point sets, adequately describing the curves, have no point-
to-point correspondence. ICP can be applied in any dimensions, in 2D or 3D, and the 
correspondence between two curves is iteratively established as well as the 
transformation parameters of the geometrical model are estimated. ICP is sensitive to 
initial approximation and outliers too. A modification was proposed to the standard 
ICP method to deal with the various lengths of the different representations of the 
same pavement marking that could lead to false results when searching for 
correspondences between point sets if not properly treated. In the developed algorithm, 
this situation is properly handled and thus unacceptable errors are avoided. 
 
For the sake of simplicity, the ICP technique will be discussed for the 2D case, as the 
generalization for 3D is straightforward. Note that in our application this is generally 
the case, as the road surface is almost flat although not necessarily horizontal but for 
smaller areas can be almost always modeled by a plane. Also, the ICP can determine 
different models of the geometrical relationships between two data sets, but in our 
case, only the rigid body model is considered, as any deformation between the two 
data sets can be ruled out. 
 
The Iterative Closest Point (ICP) method in 2D is used to find the best 
correspondence between two curves (point sets) by iteratively determining the 
translations and rotation parameters of a 2D rigid body transformation. The ICP 
algorithm can be summarized as follows:  
 

1) Establish correspondence between pairs of features based on proximity. 

2) Estimate the rigid transformation that best maps the first member of the pairs 

onto the second, based on minimizing the following expression 

 
i

iiTR TRDM
2

),( )(min  

 where R is a 2*2 rotation matrix, T is a 2*1 translation vector and subscript i 

refers to the corresponding points of the sets M (model) and D (data).  

3) Apply the estimated transformation to all features in the first/previous structure.  

4) Repeat steps 1 – 3 until convergence is reached. 

 
ICP assumes that the closest points are in correspondence, and during the repeated 
processing, the data sets get closer and closer, and ultimately, they converge to the 
correct answer. The 2D rigid body transformation used in the discussion can be 
described with three parameters, two translations, and one rotation, as shown in Eq. (5) 
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and Eq. (6) where the transformation matrix includes both the translation and rotation 
components in homogenous format. 
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where XC and YC are the mapping coordinates of the control feature points; XD and YD 
are the mapping coordinates of the conjugate digitized feature points; X and Y are 
the translation parameters between the two sets; and  is the rotation angle. 
 
The ICP method is rather robust in general provided that good approximations are 
available to start the process. This is certainly the case for the pavement markings, as 
the two representations of the same linear feature are quite close in geometrical terms. 
However, the relatively coarse sampling and varying overlap needs additional 
attention, as the potential for a mismatch cannot be ruled out. To avoid these 
situations, two extensions were added to our ICP implementation. First, one curve 
was represented in a very dense polyline structure; in actual numbers, at 1 mm 
sampling rate. This way, the closest points needed to form the pairs are guaranteed to 
be from the closet point on the curve. Second, in a preliminary analysis, a threshold 
was estimated to provide a maximum value for distances between the two point sets. 
Applying this threshold to all pairs, point pairs with excessive distance, which are 
likely to be erroneous, are eliminated from the processing. The ICP method, 
customized to the matching of different pavement marking representations was 
implemented in Matlab and has been tested with both simulated and real data. 
 
ICP performance test with simulated data  
 
To assess the performance potential as well as the implementation correctness of the 
ICP methods, various tests were initially executed using simulated data. These tests 
were aimed to determine the effectiveness with respect to shape and noise content. 
Given the typical shape of the pavement markings, straight line, 3rd order polynomial 
curve, and sine wave were selected for our investigation.  
 
Straight lines are probably the most frequently occurring pavement markings and so 
they are of high importance. Furthermore, the matching between two straight lines is 
an ill-posed problem due to the uncertainty in one direction (along the line), resulting 
in infinite number of solutions for the shift parameters. Consequently, using only 
straight lines to determine the parameters of the 2D transformation, a group of lines 
with various orientations is needed to counter the deficiency of matching lines. Fig. 9 
shows an example matching two straight lines, where the yellow is the reference, the 
dense polyline representation, blue points are the points to be matched to the curve, 
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red points are the results of the ICP, and the green points show the results of each 
iteration step. Note the difference in orientation between the two lines. 

 

 
Figure 9. Matching straight lines. 

 
Fig. 10 shows a curve modeled by a 3rd order polynomial and two different point sets 
that were ICP matched; the same color scheme is used to mark the point status. 
Although, it is difficult to judge visually, but both points sets get matched to the same 
and correct location. Clearly, the shape of the curve, varying curvature, helps to the 
ICP method to properly match the point sets to the curve. 
 

 
(a) 

[m]

[m] 

[m]

[m]
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(b) 

 
Figure 10. Matching third-order curve from two different positions, (a) and (b). 

 
More complex curves are rare in practice and can come in variety of shapes, so they 
have no typical shape. Therefore, a sine wave, approximating a good spatial point 
distribution, was simulated, as shown in Fig. 11. 
 

 
 

Figure 11. Matching a sine wave. 
 
The numerical results of these examples are listed in Table below. 
 

[m]

[m]

[m]

[m]
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Curve type 
Number of 
iterations 

Transformation parameters 
[m] 

Accuracy 
estimates [m] 

Straight line 3 
x = 0.296 
y = -0.631 
 = 0.052 

x = 0.008 
y = 0.004 
 = 0.0002 

3rd order polynomial 
(a) 

9 
x = -1.516 
y = 1.173 
 = 0.021 

x = 0.001 
y = 0.0009 
 = 0.00005 

3rd order polynomial 
(b) 

17 
x = 1.071 
y = 0.803 
 = 0.064 

x = 0.009 
y = 0.008 
 = 0.0004 

Sine wave 12 
x = 0.282 
y = 0.093 
 = 0.032 

x = 0.0001 
y = 0.0002 
 = 0.00006 

 
The curve fitting process has a low-pass filtering effect on the curve representation, 
which is more significant for the LiDAR point data, as its horizontal accuracy is about 
an order worse compared to the reference points, determined by GPS. Therefore, 
noise is not expected to be an issue for the ICP method. Table below shows results 
when various amounts of random noise were added to the sine wave curve for the ICP 
testing. 
 

Noise 

Std [m] 
Num of 

iterations

Coordinate difference (Reference–ICP)  
[m] 

Mean (dx, dy) Std (dx,dy) 

0.00 3 
-1.036    

-1.554 

0 

0 

0.05 3 
-1.055 

-1.545 

0.011 

0.007 

0.10 3 
-1.064   

-1.541 

0.016  

0.011 

0.20 3 
-1.075    

-1.536 

0.024     

0.0164 

 
The simulation data based tests confirmed that the ICP method works well for all the 
typical shapes used in the pavement marking practice; obviously, it works better for 
curves with strong shapes, defined as good 2D spatial extent. The noise tolerance of 
the ICP method is remarkable; the transformation parameters were practically 
unchanged and only their accuracy terms changed a little. 
 
ICP performance test with real data  
 
From the logic of the ICP method, the original points describing the same pavement 
marking are not properly sampled. Note this should not be mixed with the sampling 
theory, as the point density for the usual LiDAR data and ground control certainly 
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satisfies the Nyquist criterion. The problem for ICP is that when selecting the closest 
point from one set to a point in the other set, most likely the chosen point would be 
the closest one only from the set, but not the actual closest point in the curve 
described by the point set. Fig. 12 illustrates the situation, why we need the curve fitting, 

to find the actual closest point. The closest point from the original point set would give a false 
closest point. 

Figure 12. The effect of point sampling on ICP. 
 
By densifying one point set, the control points in our case, the ICP will match to the 
correct point, as instead of the distance between pairs formed from the original points, 
the distance to the interpolated point will be considered; the one from where the line 
in the perpendicular direction to curve contains the digitized point. This is the reason 
why the option for dense polyline representation in the curve fitting was introduced. 
Another option could be if both curves are fitted and have dense representation. 
Obviously, this requires significantly more computing power, as the point pair 
formation will drastically increase. 
 
To investigate the various options with respect to robustness, accuracy and execution 
speed, the following three combinations were considered: 
 

1. Both, LiDAR and GPS control points are curve-fitted before running ICP; it is 

invariant which one is used as reference and as data. 

2. Only GPS control points are curve-fitted before running ICP. 

3. Only LiDAR points are curve-fitted before running ICP. 

 

Virtual matching point

Closest point from the set of the surveyed control 
points

‐ control points 
 

 ‐ digitized point 
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Figure 13. ICP matched curves; magenta: curves fitted to control points, red: GPS 

control points, cyan: LiDAR point and curves fitted, and blue: matched points. 
Change figure for usual intersection figure. 

 
In the test data, the LiDAR point spacing varied in the 1-3 pts/m range, and the 
horizontal accuracy of the GPS-surveyed points, provided by a VRS system was 1-2 
cm horizontally.  
 
The transformation parameters between these two point sets (the original LiDAR-
derived points and their corresponding points on the control curve) are calculated in a 
least squares adjustment. Table below shows the 2D transformation parameters for the 
three different cases, clearly indicating the robustness of the ICP method with respect 
to noisy data, such as using the original LiDAR points. The differences between 
curves and residuals after ICP matching for the three cases are shown in the second 
Table below.  The 2 cm horizontal precision is realistic, given the fact that the GPS-
surveyed points are known at a 1-2 cm-level accuracy, and the LiDAR-based 
pavement marking positioning accuracy is estimated at the few cm range. The 9-10 
cm precision terms in case 2 correspond to the use of the noisy LiDAR data (no 
curve-fitting applied to smoothly model the pavement markings). 
 

ICP input data 
ICP-adjusted 

transformation parameters 
X [m] Y [m]  [] 

Both, LiDAR and GPS points are 
curve-fitted 

0.153 -0.114 0.000 

No fitting of LiDAR points, GPS 
points curve-fitted 

0.150 -0.114 0.000 

No fitting of GPS points, LiDAR 
points curve-fitted 

0.158 -0.116 0.000 

 

[m]

[m]
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Case 

Differences/Residuals 
X [m] Y[m] 

Before After Before After 
mean Std mean std mean std mean Std 

1 0.16 0.02 0.00 0.02 -0.11 0.02 0.00 0.02 
2 0.16 0.10 0.00 0.10 -0.12 0.09 0.00 0.09 
3 0.16 0.02 0.00 0.02 -0.12 0.01 0.00 0.01 

 
4.3 Pavement Markings Extraction 
 
The automated extraction of the pavement markings from LiDAR intensity data 
presented a formidable challenge for the project. By definition, the LiDAR intensity 
data stand for a relative measure; thus, different materials from different flying 
heights may produce identical intensity values. Therefore, the intensity can be only 
applied on a local basis and with sufficient care. In preparation, several datasets flown 
under various conditions were analyzed to establish a statistical basis for the 
pavement marking extraction process. After the evaluation, the conclusion was 
reached that a multiphase adaptive method should be developed to achieve the 
minimum performance level required. Some sample figures below show the 
difficulties of the automated pavement marking extraction.  
 
The relative nature of the LiDAR intensity signal is demonstrated in Fig. 14, where 
the histograms of areas around pavement markings, defined by a 1m envelop, are 
shown. Note the wide range of intensity signal values and location of the region 
around the first local maximum.  
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Figure 14. Histogram distribution of LiDAR intensity values in small area containing 

pavement markings. 
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The performance of using a global threshold is illustrated in Fig. 15, showing the 
separation of the pavement markings at various intensity threshold levels. 
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Figure 15. The separation of pavement markings using different LiDAR intensity 
thresholds. 

 
The objective of the pavement marking extraction is to identify the LiDAR points 
reflected off from the pavement markings that will serve as input to subsequent 
processing, such as curve fitting and matching. The pavement markings shown in Fig. 
16 are quite visible but that is not always the case, as road surface material and quality, 
the condition of the pavement markings and other factors may reduce the illustrated 
sharp contrast between the road surface and markings in the LiDAR intensity data 
under varying circumstances. Therefore, a simple global threshold applied to the 
intensity to separate pavement markings is not a directly applicable method in the 
general case. Furthermore, even for a given situation, such as the intersection shown 
in Fig. 16, where there is a good separation, there exists no single absolute threshold 
value; for example, LiDAR data acquired at different flying heights over the same 
area would have different intensity values. Hence, an adaptive method is proposed 
here, which was based on the statistical evaluation of various datasets. The basic idea 
is to find a locally optimal threshold that will separate the pavement markings from 
the pavement and the underlying assumption is that the relative relationship of the 
intensity values for different materials is generally preserved. It must be emphasized 
again that the availability of the reference data (GPS-surveyed representation of 
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pavement markings) provides an enormous help to accomplish this task, as it defines a 
rather narrow search space to find pavement markings. Note that as a potential follow-
up, pavement markings without reference data can be extracted in nearby areas based 
on road geometry and parameters settings adjusted to the location. 
 

 

  (a)      (b) 

Figure 16. Using a locally optimal threshold in a nearly ideal situation; thersholded 
image is shown in (a), and the histogram of the original LiDAR intensity data is 

shown in (b). 
 
In Fig 4.x, a threshold of 180 was applied, which was determined as the optimal value 
to separate the two slightly overlapping intensity distributions of the road surface and 
all the other objects, including pavement markings and grassy area. The peak at the 
low intensity values reflects pavement, while the peak at the medium range reflects 
grassy/soil area, and the high values come from pavement markings. Note as the 
number of pavement marking returns is relatively low, there is no peak visible. 
Applying the search window defined by the reference data, clearly, the pavement 
markings can be easily extracted. Note that the intensity values above 220 are 
quantized differently, as the lower digits are ignored (set to zeros), so there are gaps in 
the vertical axis of the histogram above that value.  
 
To develop a better understanding of the intensity signal behavior, LiDAR data 
acquired by different systems and under various conditions were analyzed. The 
histogram of the intensity signal was evaluated for areas of interest to this 
investigation, such as road surfaces, pavement markings and grassy areas/soil that are 
typical around roads. The areas were manually selected and attempted to be a good 
representation of the three object categories. Fig. 17 shows eight histograms that were 
selected from three different areas. Note that relatively “clean” road surfaces were 
identified by the operator to achieve a good estimate of the intensity distribution.  
 

2.949 2.9491 2.9492 2.9493 2.9494 2.9495 2.9496 2.9497

x 10
5

4.457

4.457

4.457

4.457

4.457

4.457

4.457

4.457
x 10

6

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

3500

4000

33



Airborne LiDAR Reflective Linear Feature Extraction for Strip Adjustment and Horizontal Accuracy Determination   
 

 

(a) Area 1, sub-area 1 (b) Area 1, sub-area 2 

 

(c) Area 3, sub-area 1 (d) Area 3, sub-area 2 

  

(e) Area 3, sub-area 3 (f) Area 5, sub-area 1 
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(g) Area 7, sub area 1 (h) Area 7, sub area 2 

 
Figure 17. Histograms of various pavement areas; (a-f) concrete and (g-h) asphalt 

surface. 
 
The various histograms in Fig. 17 clearly demonstrate that the intensity varies by 
missions and within one mission too. Note all the concrete data are from one long 
mission, but taken from different areas with different road quality. An additional 
observation is that even along a short stretch of 100 m, the intensity values can 
noticeable change. Also, the distributions show some variations; note the fact the 
fresh asphalt may not provide returns. The mean of the samples varies over the range 
of 85 and 125. 
 
Grassy and soil areas were analyzed in the next step. Fig. 18 shows four grassy/soil 
areas. The results show a clear separation from the pavement.  
 

  

Area 1 Area 3, sub-area 1 
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Area 3, sub-area 2 Area 6 

 
Figure 18. Histograms of various grassy and soil areas. 

 
In the last step, pavement markings were evaluated. Unfortunately, the histograms of 
the pavement markings are overlapping with that of both the pavement and grassy/soil 
areas, with more overlap with the second group. This is a bit contradicting to 
expectation, as the dark road surface and bright pavement markings should be at the 
opposite end of the intensity range. The reason why the pavement markings intensity 
distribution has unexpectedly lower values is explained by the specifics of the spatial 
sampling of the LiDAR data. Due to beam divergence, the LiDAR pulse has non-
negligible footprint, ranging from a few cm to close to a meter, depending on flying 
height and sensor aperture. Therefore, the LiDAR footprint is generally larger than the 
width of a typical pavement marking, which means that the reflection will jointly 
come from both areas (the pavement marking and the pavement), and thus, the final 
intensity value is a combination of the high intensity return from the pavement 
markings and the low intensity return from the pavement, proportional to the footprint 
overlaps of the two features. Fig. 7 shows the illustration based on actual LiDAR data. 
 
An additional attribute of the intensity signal is that there is no agreement in the 
industry concerning the definition and the suggested range of the intensity value; note 
the different range of the figures above. Furthermore, the formation of the intensity 
value could be different and is not necessarily proportional to the relative energy of 
the reflected pulse, as it could additionally include another value, which is an 
expression of the shape or change in shape of the returned pulse. Therefore, it is not a 
surprise that different LiDAR manufacturers use different intensity ranges, such as [0-
255] or [0-4095]. Further complicate the case, some systems come with AGC 
(automated gain control), so the receiver electronics adjusts the absolute intensity 
range according to a slowly changing average signal strength and provides intensity 
values relative to that value in the same intensity range. 
 
Based on the histogram analysis and the impact of the LiDAR footprint, a method was 
developed that is not only adaptive but brings in object space constraints in terms of 
applying the shape of the pavement markings to improve the point selection. Fig. 19 
shows the block diagram of the proposed method. Note that some components such as 
curve fitting and ICP (Iterative Closest Point) are discussed in subsequent sections. 
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Figure 19. Data processing block diagram of extracting LiDAR points of pavement 

markings. 
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The process starts once the search spaces around the pavement markings have been 
extracted. The survey data of the control features, pavement markings, are provided as 
point observations along the centerline of the markings. Pavement markings can be 
easily surveyed using GPS VRS technology; the process is fast, typically it takes less 
than a minute to survey a point, and the accuracy, in general, is about 2-3 and 3-6 cm 
horizontally and vertically, respectively. In most cases survey data are available for 
the pavement markings along the edge lines which can be very quickly and efficiently 
surveyed. The overall accuracy of the LiDAR system can be estimated from the 
sensor/system and the flying parameters. Adding a margin, the maximum error 
envelops can be computed, and thus, LiDAR points in the vicinity of the pavement 
markings can be extracted; the typical distance value is about 1 m or less in most 
situations.  
 
The method was implemented in Matlab and a large number of tests were performed 
to assess the performance of the extraction process; note that other modules developed 
to support the curve fitting and ICP processes were also used. Fig 20 shows how the 
mean residual of the selected points with respect to the reference drops at the optimal 
intensity value.  
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Figure 20. Mean residuals as a function of the intensity threshold. 

 
Although, with higher intensity threshold the mean residual continues to decrease, this 
improvement is minor and more importantly it is less stable, as the number of selected 
points will go down too, as shown in Fig. 21. Therefore, the final threshold will be 
selected when the mean residual falls bellow a predefined value, to assure that the 
good residual value is based on a reliable number of points. The threshold value of 
allowed individual residuals mentioned in the block diagram are determined based on 
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the pavement width and footprint size, and it is the maximum allowed value that a 
marking point could be far away from the curve’s center. 
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Figure 21. Number of selected points vs. the intensity threshold. 

 
 
The results of a typical pavement markings extraction is shown in Fig. 22; green 
points are the extracted points based on the search window, defined by the estimated 
maximum error envelop, red points are the reference points from the GPS survey, and 
blue points are the identified LiDAR points bounced off from the pavement markings. 
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Figure 22. Extracted pavement marking LiDAR points.  
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In the developed method there was no assumption on the distribution of the LiDAR 
points with respect to the orientation of the pavement markings. In reality, however, 
LiDAR missions over roads are typically flown along the road line, so in most cases 
the LiDAR profiles, points collected in one swing of the oscillating (or rotating) 
mirror, fall across the main direction of the pavement markings. This geometrical 
situation can be exploited, as one-dimensional search techniques can be applied. Note 
that spacing is usually denser along the profile lines. The footprint of the profile for 
short distances can be always modeled as a straight line, so it can be easily intersected 
with the pavement markings centerline. The conjugate LiDAR point of the 
intersection does not exist in general, but analyzing the intensity profile along the 
profile, such as fitting a curve and determining the maximum, can provide the 
matching virtual LiDAR point. This approach leads to a slightly different processing, 
since a point-to-point correspondence is established right away, and thus, the 
transformation can be directly computed. This avenue was not further investigated in 
this effort.  
 
 
4.4 Performance Assessment 
 
The initial performance assessment included all the processing steps, including the 
automated pavement marking extraction. The attached publication (Appendix A.3) 
provides a complete review of the performance validation. Additional results may be 
added to the final report. 
 
4.5 Software Developments 
 
During the course of the project extensive code developments were carried out. 
Matlab environment represented the basic platform for algorithmic implementation 
and testing, and all the statistical analyses and simulations were carried out in Matlab. 
Then, once the techniques had settled, a wrapper interface in Microsoft Visual Studio, 
C++ environment was developed that the processes can be called from C++.  The 
benefit of this approach is that the C++ code can accessed from the GeoCue 
application, the data transfer and conversion are simpler in C++. A large number of 
Matlab routines are available in different categories such as curve fitting, ICP, least 
square adjustments, various 3D transformations, etc. Most of the macros can be easily 
reused for other purposes. In addition a basic Java interface was created to export and 
import XML, which is the basic data passing protocol for the GeoCue product. The 
program manual is in Appendix C. 
 
 
5. CONCLUSIONS 
 
LiDAR technology can routinely deliver accuracy sufficient to meet the requirements 
of mainstream (basic) mapping– typical quoted vertical accuracy is about 50 cm at 
90% CEP level, but 10-20 cm is also achievable under well-controlled circumstances. 
For large-scale mapping, such as engineering scale mapping of transportation 
corridors, however, additional effort is needed to achieve the required accuracy, 
including careful flight planning, adequate processing and QA/QC methods. Because 
of the nature of LiDAR, navigation-based direct orientation of an active imaging 
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sensor, there is no feedback in the processing loop that could provide for assessment 
of the absolute accuracy, and therefore the use of ground control is always necessary. 
The developed technique in this research project, which is based on using road 
pavement markings, has shown good automation potential and attractive performance 
as tool to validate the horizontal accuracy and/or to provide for strip corrections, if 
needed. Except for the automated pavement markings extraction component, all the 
other processing steps exhibit a rather robust performance. In summary, based on our 
test results, the horizontal accuracy terms can be obtained around 5 cm precision for 
typical transportation corridor projects, at engineering scale, flown by the ODOT 
OAE LiDAR system. 
 
6. IMPLEMENTATION PLAN 
 
The OSU-developed code in Matlab, wrapped in C++ has been passed to GeoCue 
Corporation for integration in two phases; the curve fitting and matching part was 
already delivered in December 2007. We expect to collaborate on the integration, so 
the developed technique can be used as a standard production tool in GeoCue in the 
ODOT OAE production environment. 
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ABSTRACT: 
 
LiDAR technology, the primary source of highly accurate surface data at large scale, has seen remarkable developments in recent 
years. Specifically, the accuracy of the laser ranging has reached the few cm level for hard surfaces, close to static survey 
performance, and the point density has increased significantly, as a result of higher pulse rates, such as 150 kHz PRF for multipulse 
LiDAR systems. The high ranging accuracy of the laser sensor also means that the overall accuracy of the point cloud is now 
predominantly determined by the quality of the navigation solution (typically based on GPS/IMU sensor integration), which is also 
advancing. All these developments allow for better surface representation in terms of denser point cloud with highly accurate point 
coordinates. Furthermore, because of the increased point density, the horizontal accuracy has become an equally important part of 
the product characterization. In parallel to these developments, the demand for better QA/QC is also growing, and now the 
characterization of the LiDAR products includes the horizontal accuracy. Except for relative measures, there is no reliable way to 
assess the positioning quality of the data captured by any imaging sensor system, which is based on direct georeferencing, and 
therefore, using some ground control is almost mandatory if high accuracy is required. This paper introduces a method to use road 
pavement marking as ground control that could be used for QA/QC. These linear features are widely available in urban areas and 
along transportation corridors, where most of the government and commercial mapping takes place, and an additional advantage of 
using pavement markings is that they can be quickly surveyed with various GPS echnique (RTK, VRS, post-processed). 
 
 

                                                                 
* Corresponding author. 

1. INTRODUCTION 

The evolution of ground control used for product QA/QC is 
closely related to the improvements in the LiDAR point density. 
When sparsely distributed points were available, the vertical 
accuracy was the only concern (ASPRS Guidelines, 2004). In 
fact, the horizontal characterization was greatly ignored at the 
introduction of LiDAR technology. Obviously, from a 
theoretical point of view, points separated by a few meters did 
not allow for adequate surface characterization in general, 
except for flat areas. To assess the vertical accuracy of the point 
cloud, flat horizontal surfaces with precisely known elevations 
can be used. Once the vertical difference was measured, usually 
based on the statistics derived from a sufficient number of 
points over flat surface patches, either a simple vertical shift 
was applied as a correction, or a more complex model could be 
used that factored in surface differences observed at several 
(well distributed) locations. 
 
As the LiDAR market started to grow rapidly, soon the LiDAR 
systems showed truly phenomenal performance improvements. 
In less than five years, the pulse rate improved by an order, and 
now 100 and 150 kHz systems are widely used (Optech, 2006 
and Leica, 2006); in addition multi-pulse systems are also 
available. More importantly, the ranging accuracy has increased 
substantially and now stands close to the level of static GPS or 
short baseline kinematic surveys, i.e., 1-2 cm for hard surfaces, 
which is practically negligible to the typical navigation error 
budget. This remarkable performance potential of the newer 
LiDAR systems, combined with better operational techniques, 
opened the door toward applications where large-scale or 

engineering-scale accuracy is required. At this point, the 
georeferencing error budget and, to a lesser extent, the sensor 
calibration quality, are critical to achieving engineering design 
level accuracy (few cm). Using ground control is an efficient 
way for independent and highly reliable QA/QC processes and, 
if needed, to compensate for georeferencing and sensor 
modeling errors.  
 
The errors in laser scanning data can come from individual 
sensor calibration or measurement errors, lack of 
synchronization, or misalignment between the different sensors. 
Baltsavias (1999) presents an overview of the basic relations 
and error formulae concerning airborne laser scanning. Schenk 
(2001) provides a summary of the major error sources for 
airborne laser scanners and error formulas focusing on the 
effect of systematic errors on point positioning. More recently, 
Csanyi May (2007) presents a comprehensive analysis on 
LiDAR error modeling. In general, LiDAR sensor calibration 
includes scan angle and range calibration, and intensity-based 
range correction. The LiDAR sensor platform orientation is 
always provided by a GPS/IMU-based integrated navigation 
system. The connection between the navigation and LiDAR 
sensor frames is described by the mounting bias, which is 
composed of the offset between the origin of the two coordinate 
systems and the boresight misalignment (the boresight 
misalignment describes the rotation between the two coordinate 
systems, and is usually expressed by roll, pitch and heading 
angles). To achieve optimal error compensation that assures the 
highest accuracy of the final product, all of these parameters 
should be calibrated. Since not all of the parameters can be 
calibrated in a laboratory environment, a combination of 
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laboratory and in situ calibrations is the only viable option for 
LiDAR system calibration. Typical anomalies in the LiDAR 
data indicating system calibration errors are: edges of the strips 
could bend up or down (scan angle error), horizontal surfaces 
have a visible mismatch between the known and the LiDAR 
point-defined surfaces (boresight misalignment or navigation 
error), vertical coordinates of LiDAR points over flat areas do 
not match the known vertical coordinate of the area (ranging or 
navigation error), objects, such as pavement markings made of 
retro reflective coatings, may show up above the surface level, 
although they should practically have identical vertical 
coordinates (lack of intensity correction of the range data), etc.  
 
The techniques to detect and ultimately compensate for errors 
fall into two broad categories based on whether they use 
absolute control or not. The first group includes most of the 
strip adjustment techniques and some of the sensor and 
boresight calibration methods. The ground control-based 
techniques encompass comparisons to reference surfaces, such 
as parking lots and buildings, and methods using LiDAR-
specific control targets. Another categorization of the 
techniques is whether they only aim to remove observed 
differences, also called data driven methods, or they try to 
achieve the same objective through the sensor model, in other 
words, to calibrate the sensor model parameters.  
 
The use of dedicated LiDAR targets is a basic method to 
observe LiDAR point cloud differences at reference points and, 
consequently, to estimate errors.  One of the first approaches to 
use LiDAR-specific ground targets was developed at OSU 
(Csanyi and Toth, 2007). The circular targets, optimized for a 
point density of 3-4 pts/m2 and above, had a diameter of 2 m 
and used a different reflective coating on the center circle and 
outer ring. At the required point cloud density, the number of 
points returned from the targets allowed for accurate estimation 
of both vertical and horizontal differences. The technique has 
been used in several projects and provided highly accurate 
ground control for QA/QC (Toth et al., 2007a). In a similar 
implementation, small retro reflectors are placed in a certain 
shape of similar size, in which case the construction of the 
target is simpler while the processing is more complicated. 
Although, these solutions provide excellent results, their use is 
somewhat limited by economic factors; i.e., the installation and 
the necessary survey of the targets could be quite labor-
intensive. Note that the processing of the LiDAR-specific 
ground targets is highly automated, and human intervention is 
only needed for the final evaluation of the results. 
 
To advance the use of ground targets for transportation corridor 
surveys, an economic method is proposed here that can achieve 
results comparable to using LiDAR-specific ground targets 
(Toth et al., 2007b).  The use of pavement markings as ground 
control offers the advantage of being widely available in 
excellent spatial distribution, and require no installation. 
Certainly, the surveying of the targets is still needed, but it 
becomes less difficult with the increasing use of GPS VRS 
systems that can provide cm-level accuracy in real-time. The 
other condition of using pavement markings is the availability 
of LiDAR intensity data that is hardly a restriction with modern 
LiDAR systems. Note that the distinct appearance of the 
pavement markings in the LiDAR intensity image is essential to 
the proposed method, see Figure 1. The main steps of using 
pavement marking as ground control are briefly described in 
this paper. 

 
 

Figure 1. Typical pavement markings at an intersection  
(LiDAR point density was about 4 pts/m2). 

 
2. THE CONCEPT 

The concept of the proposed method, including pavement 
marking extraction together with the parameterization of the 
marks based on LiDAR intensity data, the comparison with 
ground truth, and the determination of a transformation to 
correct the point cloud, analysis of the result, etc., is shown in 
Figure 2. The GPS-surveyed data of the pavement markings, 
represented in a series of points with cm-level accuracy are 
assumed to be available. For sensor calibration and/or strip 
adjustment, sufficient number of pavement markings with good 
spatial distribution is required to achieve good performance. 
Currently, only the most commonly found types of pavement 
markings are considered, such as stop bars, straight edge lines 
and curved edge lines. In each case, the survey data of the 
pavement markings are provided as point observed along the 
centerline of the markings. The LiDAR data, including range 
and intensity components, are assumed to be of a reasonable 
quality; i.e., with no gross errors, and thus, the point cloud 
accuracy is better than a meter. 
 

 

Figure 2. Overall workflow of the proposed method. 
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Based on the comparison of the two representations of 
pavement markings, one obtained from the GPS survey and the 
other one from LiDAR intensity and range data, 2D/3D offset 
and orientation differences can be detected. Since the road 
surfaces are predominantly flat and mostly horizontal, the 
horizontal and vertical discrepancies can be separated in most 
of the cases. Analyzing the magnitudes of the observed 
differences and their spatial distribution, the LiDAR data 
quality can be assessed and, if needed, corrections can be 
applied to the LiDAR point cloud to improve the point position 
accuracy. The methodology for the correction could be based 
on either introducing a spatial transformation to reduce the 
differences at the controls, or trying to adjust the sensor 
parameters to achieve the same objective. In most of the cases, 
a 3D similarity transformation is applied, and the accuracy 
terms for both data sets are needed to properly characterize the 
data quality after applying the correction. Note that assessing 
the horizontal accuracy of the LiDAR point cloud is difficult, as 
it is mainly defined by the footprint of the laser pulse, which 
depends on the flying height and beam convergence; in 
addition, the impact of object surface characteristics could be 
also significant. In the following sections, the three key 
components of the proposed method, pavement marking 
extraction, curve fitting and matching, are discussed in detail. 
 

3. EXTRACTING PAVEMENT MARKINGS 

One of the first attempts on using LiDAR intensity data was 
demonstrated by Maas (2001), who describes the extension of a 
TIN-based matching technique using reflectance data (LiDAR 
intensity data) to replace surface height texture for the 
determination of planimetric strip offsets in flat areas with 
sufficient reflectance texture. Later, research interest steered 
toward conventional classification use of the intensity data. 
Song et al. (2002) proposed a technique to use intensity data for 
land-cover classification. A comprehensive study on processing 
both range and intensity data is provided by Sithole (2005). 
Kaasasalainen et al. (2005) provides a review on intensity data 
as applied to calibration. Finally, Ahokas et al. (2006) presents 
the results of a calibration test on intensity data using the 
Optech ALTM 3100. All these demonstrations emphasize the 
relative nature of the LiDAR intensity data; namely, different 
surfaces, data from different flying heights, and different 
surface orientations can produce exactly the same intensity 
values. Therefore, techniques to normalize or calibrate the 
intensity data, such as to reference the intensity and range 
values with respect to each other started becoming more 
common. 
 
The extraction of the pavement markings is based on the 
typically significant difference in the LiDAR intensity values 
between road surfaces and pavement markings, as illustrated in 
Figure 1. The selection of LiDAR points obtained from the 
pavement markings is greatly simplified by the availability of 
GPS survey data of the pavement markings, which can 
drastically reduce the search window. Figure 3 shows a typical 
case, where the GPS survey points are overlaid on the LiDAR 
image; note the minor, yet visible, mismatch between the 
pavement marking and the survey points.  
 

 
 

Figure 3. Freeway ramp with pavements markings and GPS-
surveyed points (green). 

 
Depending on the overall LiDAR data quality, more precisely 
the horizontal accuracy of the point cloud, the actual search 
area is typically a narrow patch along the GSP-surveyed points 
with a width of less than 1 m. Ideally, an extracted patch should 
only contain points of road surfaces and pavement markings, 
with two dominant intensity ranges. Figure 4 depicts the 
histogram of the LiDAR intensities in such an area. The 
distribution shows a typical shape, characterized by most of the 
points clustered at lower intensities with slowly decreasing 
frequencies toward the higher intensities of the pavement 
markings. The reason why there is no clear separation between 
the points of the road surface and pavement markings is 
illustrated in Figure 5, which shows that the points falling on 
the boundary regions between the two areas have varying 
intensity values; note that the LiDAR footprint size is 
comparable to the pavement makings’ dimension. 

 
Figure 4. Intensity histogram of a narrow area around pavement 

markings. 
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(a) 

 
(b) 

Figure 5. Changes of intensity values along pavement markings: 
LiDAR point locations overlaid on optical image (a) and 

intensity values (b). 
 
Unfortunately, the relative nature of the LiDAR intensity signal 
does not allow for a general parameterization of the intensity 
values for pavement surfaces and pavement markings, and thus, 
there is no absolute threshold that would separate the two areas. 
Therefore, first the distribution of the intensity signals in the 
search window should be analyzed to determine an optimal 
threshold for separating pavement and pavement marking 
points. In our approach, the point, where the curve of the 
pavement surface points levels out, was selected as a threshold, 
and subsequently used for extraction of the pavement marking 
points. The points extraction based on this threshold could 
result in errors, such as marking points are omitted or pavement 
points are included. Therefore, further checks are needed, 
which is accomplished by curve fitting and matching, described 
below, where the availability of object space information, such 
as curvature of the pavement markings, can be utilized. Figure 6 
shows the pavement markings extracted for the area pictured in 
Figure 3; the threshold was 180. 

 
Figure 6. Pavement markings extracted by thresholding. 

 
4. CURVE FITTING 

The extracted pavement marking and GPS-surveyed points have 
no point-to-point correspondence, and thus, a point-based 
transformation is directly not applicable. However, their shape 

can be matched, on condition that the two representations 
provide an adequate description of the same linear feature. In 
this case, the problem is simply how to match two free-shape 
curves. In the following, the key steps of curve fitting are 
presented, while the matching is discussed in the next section. 
 

The purpose of curve fitting is twofold: first, it provides a 
validity check for the pavement marking points extracted, and 
second, it allows for modeling both pavement marking 
descriptions as linear features, so they can be matched to each 
other. The selected curve fitting method is an extended version 
of the algorithm, originally proposed by Ichida and Kiyono in 
1977, and is a piecewise weighted least squares curve fitting 
based on cubic (third-order polynomial) model, which seemed 
to be adequate for our conditions, such as linear features with 
modest curving. To handle any kind of curves, defined as the 
locus of points f(x, y) = 0, where f(x, y) is a polynomial, the 
curve fitting is performed for smaller segments in local 
coordinate systems, which are defined by the end points of the 
curve segments. The primary advantage of using a local 
coordinate system is to avoid problems when curves become 
vertical in the mapping coordinate system. Obviously, the 
fitting results as well as the fitting constraints are always 
converted forth and back between the local and mapping 
coordinate frames, for details, see (Toth et al., 2007). 
 

The main steps of the piecewise cubic fitting (PCF) process are 
shortly discussed below; the notation used in the discussion is 
introduced in Figure 7. To achieve a smooth curve, the curve 
fitting to any segment is constrained by its neighbors by 
enforcing an identical curvature at the segment connection 
points; in other words, PCF polynomial is continuous with its 
first derivative at connection points x=s, x=t, etc. The equations 
describing the 3rd polynomial and its first derivative are: 
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Figure 7. Piecewise weighted least squares curve fitting 

method. 
 

The core processing includes the following steps: 1) aS and bS, 
the coefficients of the second and third order terms of the fitted 
curve for interval ‘i’ are estimated; consider the constant term 
(yS) and the coefficient of the first order term (mS) fixed, known 
from the curve fitting from the previous segment. In the 
adjustment, the points in interval ∆ i2+ i+∆ i1 (past, present, and 
future data points) are used, 2) the value (yt) and the slope (mt) 
at x=t are computed; these values are used as fixed constraints 
in the curve fitting for the next segment, and 3) step 1 is 
repeated to process the next segment. Additional details can be 
found in (Toth et al., 2007). Curves fitted to pavement 
markings’ and GPS-surveyed points are shown in Figure 8; the 
LiDAR scanlines are readily visible. 

∆i1 i

S(x) 

yt 

mt Sk(x) 
Sk+1(x) 

s x 
∆i2 

t 

 

∆i1 ∆i2i

ys 

ms 

47



 
 

Figure 8. Curve fitting, LiDAR and GPS-surveyed points (blue 
and magenta) and fitted curves (red and cyan) 

 
5. MATCHING CURVES 

The objective of curve matching is to find the spatial 
relationship between two data representations of the pavement 
markings, the curve-fitted pavement markings and the GPS 
surveyed points. Assuming that the two representations, such as 
the curve fitted ones, provide an adequate description of the 
same shape, the free-shape curve matching techniques can be 
applied. Since the pavement markings’ descriptions in both 
original and curve-fitted representations for both LiDAR and 
GPS-surveyed points are spatially close to each other, the well-
known Iterative Closest Point (ICP) algorithm (Besl and 
McKay, 1992; Madhavan et al., 2005) was selected to perform 
this task. 
 
Iterative registration algorithms are increasingly used for 
registering 2D/3D curves and range images. Due to its 
consistent performance, the ICP algorithm was adopted here to 
match curves describing pavement markings obtained from 
LiDAR intensity and GPS measurements. The ICP algorithm 
finds the best correspondence between two curves (point sets) 
by iteratively determining the translations and rotations 
parameters of a 2D/3D rigid body transformation. 

∑ +−
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iiTR TRDM
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),( )(min  

Where R is a 2×2 rotation matrix, T is a 2×1 translation vector, 
and subscript i refers to the corresponding points of the sets M 
(model) and D (data). The ICP algorithm can be briefly 
summarized as follows: 

1. For each point in D, compute the closest point in M 
2. Compute the incremental transformation (R, T)  
3. Apply incremental transformation from step (2) to D 
4. If relative changes in R and T are less than a  given 

threshold, terminate, otherwise go to step (1) 
 
ICP can be applied to individual pavement markings or to a 
group of pavement markings. Figure 9 shows an intersection 
where four lines were matched. 

 
Figure 9. Curve matching based on four curves; magenta: 

curves fitted to control points, red: GPS control points, cyan: 
curve points derived from LiDAR, and blue: transformed curve 

points after ICP. 
 
The ICP algorithm was implemented in Matlab and space-scale 
optimization was incorporated to reduce execution time.  
 

6. EXPRIMENTAL RESULTS 

Initial performance tests of the proposed method were 
performed using typical intersection and freeway ramp data 
from a recently flown LiDAR survey, where GPS-surveyed 
pavement markings were available, both were provided by the 
Ohio Department of Transportation. The LiDAR point spacing 
varied in the 1-3 pts/m range, and the horizontal accuracy of the 
GPS-surveyed points, provided by a VRS system was 1-2 cm.  
 

 
Figure 10. ICP matched curves; magenta: curves fitted to 

control points, red: GPS control points, cyan: LiDAR point and 
curves fitted, and blue: matched points. 

 
In the curve fitting process both data representations were 
fitted, with a point spacing of 1 cm, and various combinations 
were processed by the ICP-based curve matching in 2D and 3D. 
In order to assess the accuracy of the transformation, the 
correspondence between the LiDAR-derived curve and the 
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control curve was established. Since the two curves, in general, 
are not entirely identical, even after the final ICP iteration, the 
transformed LiDAR point-derived curve is close but not 
necessarily falls on the control curve. However, the location of 
the transformed LiDAR-derived points represents the best fit to 
the control curve in the least squares sense. Therefore, these 
points are projected to the closest points of the control curve, 
and then they are considered as conjugate points. Figure 10 
shows the results for the ramp area pictured in Figure 3. The 
transformation parameters between these two point sets (the 
original LiDAR-derived points and their corresponding points 
on the control curve) are calculated in a least squares 
adjustment. Table 1 shows the 2D transformation parameters 
for three different cases, clearly indicating the robustness of the 
ICP method with respect to noisy data, such as using the 
original LiDAR points. The differences between curves and 
residuals after ICP matching for the three cases are shown in 
Table 2.  The 2 cm horizontal precision is realistic, given the 
fact that the GPS-surveyed points are known at a 1-2 cm-level 
accuracy, and the LiDAR-based pavement marking positioning 
accuracy is estimated at the few cm range. The 9-10 cm 
precision terms in case 2 correspond to the use of the noisy 
LiDAR data (no curve-fitting applied to smoothly model the 
pavement markings). 
 

ICP-adjusted 
transformation parameters ICP input data 
∆X [m] ∆Y [m] ϕ [°] 

Both, LiDAR and GPS points are 
curve-fitted 

0.153 -0.114 0.000 

No fitting of LiDAR points, GPS 
points curve-fitted 0.150 -0.114 0.000 

No fitting of GPS points, LiDAR 
points curve-fitted 

0.158 -0.116 0.000 

 

Table 1. Transformation results (2D). 
 

Differences/Residuals 
X [m] Y[m] 

Before After Before After 
Case 

mean Std mean std mean std mean Std 
1 0.16 0.02 0.00 0.02 -0.11 0.02 0.00 0.02 
2 0.16 0.10 0.00 0.10 -0.12 0.09 0.00 0.09 
3 0.16 0.02 0.00 0.02 -0.12 0.01 0.00 0.01 

 

Table 2. Original differences and residuals after ICP (2D). 
 

7. CONCLUSION 

The new method that introduced the use of pavement markings 
as LiDAR ground control delivered encouraging initial results. 
The performance of the three main processing steps, 
including the extraction of pavement markings, curve fitting, 
and ICP-based matching has been validated. Using a dataset 
acquired over a transportation network by a state-of-the-art 
LiDAR system, pavement markings from several intersections 
and freeway ramps have been processed delivering robust 
results. In particular, the performance of the ICP matching 
algorithm is noteworthy.  
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ABSTRACT 
 
LiDAR technology has seen remarkable developments in recent years. In particular, the accuracy of the laser 
ranging has reached the few cm level for hard surfaces, close to static survey performance, and the point density has 
increased significantly, reaching 150 kHz PRF for multipulse LiDAR systems. These developments allow for better 
surface representation and exploitation of the 3D nature of the point cloud; in other words, the horizontal accuracy 
has become an equally important part of the product characterization. The high ranging accuracy of the laser sensor 
means that overall accuracy of the point cloud is predominantly determined by the quality of the navigation solution 
(typically based on GPS/IMU sensor integration). Despite recent significant advancements in navigation 
technologies, to achieve and sustain a high accuracy navigation solution of an airborne platform for longer flight 
lines over extended time is still a difficult task, as positional drift frequently occur. Moreover, there is no reliable 
way to assess the positioning quality of the data captured by the laser sensor within the LiDAR system, which is 
based on direct georeferencing. Therefore, using some ground control is almost mandatory if high accuracy is 
required. This paper introduces a method to use road pavement marking as ground control that could be used for 
QA/QC. These linear features are widely available in urban areas and along transportation corridors, where most of 
the government and commercial mapping takes place.  
 
 

INTRODUCTION 
 

Since its introduction in the late 90s, LiDAR has seen remarkable developments, mainly driven by technology. 
For the user, it means higher point density, or better surface representation, and improving accuracy. The state-of-
the-art is that the laser sensor can provide 1-2 cm ranging accuracy for so-called hard surfaces at normal flying 
heights; which means that the georeferencing term accounts primarily for the accuracy of the LiDAR product. 
Despite consistent advancement of the GPS/IMU-based georeferencing technology for longer flight lines, the 
performance of the navigation solution could change, resulting in a varying accuracy of the LiDAR point cloud. The 
main effect is that strip overlap areas could show varying amount of discrepancies; typically, described as drift. 
While a strip adjustment can eliminate the strip differences, the absolute accuracy is not necessarily improved as a 
result of the applied correction. Therefore, ground control is always needed as there is no other way to 
independently validate the accuracy of the LiDAR product, including both the vertical and horizontal terms. The 
methodology to characterize a LiDAR product using ground control includes several components, such as the 
determination of the differences between LiDAR data and reference surfaces, requirement for the number of ground 
control areas, analysis of the distribution of the differences, statistical method used, specification and qualification 
of the results, etc. This paper is only addressing the measurements of discrepancies.  

The evolution of ground control used for product QA/QC is closely related to the improvements in the LiDAR 
point density. When sparsely distributed points were available, the vertical accuracy was the only concern (ASPRS 
Guidelines, 2004). In fact, the horizontal characterization was greatly ignored at the introduction of LiDAR 
technology. Obviously, from a theoretical point of view, points separated by a few meters did not allow for adequate 
surface characterization in general, except for flat areas. To assess the vertical accuracy of the point cloud, flat 
horizontal surfaces with precisely known elevation can be used. Once the vertical difference was measured, usually 
based on the statistics derived from a sufficient number of points over flat surface patchs, either a simple vertical 
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shift was applied as correction or a more complex model could be used that factored in surface differences observed 
at several (well distributed) locations. 

As density increased, however, the need for characterizing the point cloud in 3D terms became important, 
which ultimately required the measurements of 3D surface discrepancies. Methods were soon developed to 
determine surface discrepancies that could be applied to both LiDAR strips and reference surfaces. Obviously, 3D 
observations are only available if there is sufficient terrain relief, in which case the problem is solved by surface 
matching (e.g., Besl and McKay, 1992; Gruen and Akca, 2005). There is a variety of methods that can handle any 
kind of surfaces or can use a number of planar surface patches with different surface normal vectors. A practical 
aspect of the surface matching is that it is rather difficult to precisely survey ground surfaces of any shape in general, 
although terrestrial laser scanning is becoming a viable solution for this purpose. Using man-made objects, such as 
buildings, provides an easier approach to develop a reference test range with many differently oriented planar 
surfaces. In fact, airport areas are frequently used for laser sensor calibration. 

The use of dedicated LiDAR targets is another alternative to observe LiDAR point cloud differences at 
reference points and, consequently, to estimate errors.  One of the first approaches to use LiDAR-specific ground 
targets was developed at OSU (Csanyi and Toth, 2007). The circular-shaped targets, optimized for a point density of 
3-4 pts/m2 and above, had a diameter of 2 m and used a different reflective coating on the center circle and outer 
ring. At the required point cloud density, the number of points returned from the targets allowed for accurate 
estimation of both vertical and horizontal differences. The technique has been used in several projects and provided 
highly accurate ground control for QA/QC (Toth et al., 2007a). In a similar implementation, small retro reflectors 
are placed in a certain shape of similar size, in which case the construction of the target is simpler while the 
processing is more complicated. Although, these solutions provide excellent results, their use is somewhat limited 
by economic factors; i.e., the installation and the necessary survey of the targets could be quite labor-intensive. Note 
that the processing of the LiDAR-specific ground targets is highly automated, and human intervention is only 
needed for the final evaluation of the results. 

To advance the use of ground targets for transportation corridor surveys, an economic method is proposed here 
that can achieve comparable results using LiDAR-specific ground targets (Toth et al., 2007b).  The use of pavement 
markings as ground control offers the advantage of being widely available in excellent spatial distribution, and 
requires no installation. Certainly, the surveying of the targets is still needed, but it becomes less difficult with the 
increasing use of GPS VRS systems that can provide cm-level accuracy in real-time. The other condition of using 
pavement markings is the availability of LiDAR intensity data that is hardly a restriction with modern LiDAR 
systems. Note that the distinct appearance of the pavement markings in the LiDAR intensity image is essential for 
the proposed method, see Figure 1. The main steps of using pavement marking as ground control are briefly 
described in this paper. 
 

  
(a) (b) 

 
Figure 1. Pavement marking appearance in LiDAR intensity image (a) and reference optical image (b). 
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USING PAVEMENT MARKINGS AS GROUND CONTROL 
 

The concept of the proposed method, including pavement marking extraction together with the parameterization 
of the marks based on LiDAR intensity data, the comparison with ground truth, and the determination of a 
transformation to correct the point cloud, analysis of result, etc., is shown in Figure 2. The GPS-surveyed data of the 
pavement markings, represented in a series of points with cm-level accuracy is assumed to be available. For sensor 
calibration and/or strip adjustment, sufficient number of pavement markings with good spatial distribution is 
required to achieve good performance. Currently, only the most widely found types of pavement markings are 
considered: Stop bars, straight edge lines and curved edge lines. In each case, the survey data of the pavement 
markings is provided as point observations along the centerline of the markings. The LiDAR data, including range 
and intensity components, are assumed to be of reasonable quality; i.e., no gross errors and thus the point cloud 
accuracy is better than a meter. 

Based on the comparison of the two descriptions of pavement markings, one obtained from the GPS survey and 
the other one form LiDAR intensity and range data, 2D/3D offset and orientation differences can be detected. Since 
the road surfaces are predominantly flat and mostly horizontal, the horizontal and vertical discrepancies can be 
separated in most of the cases. Analyzing the magnitude of the observed differences and their spatial distribution, 
the LiDAR data quality can be assessed and, if needed, corrections can be applied to the LiDAR point cloud to 
improve the point position accuracy. The methodology for the correction could be based on either introducing a 
spatial transformation to reduce the differences at the controls or trying to adjust the sensor parameters to achieve 
the same objective. In most of the cases, a 3D similarity transformation is applied and the accuracy terms for both 
data sets are needed to properly characterize the data quality after applying the correction. Note that assessing the 
horizontal accuracy of the LiDAR point cloud is difficult, as it is mainly defined by the footprint of the laser pulse, 
which depends on flying height and beam convergence; in addition, the impact of object surface characteristics 
could be also significant. In the following, the three key components of the proposed method, pavement marking 
extraction, curve fitting and matching are discussed at detail. 
 
Extraction of Pavement Markings  

The extraction of the pavement markings is based on the significant difference in the LiDAR intensity values 
between road surfaces and pavement markings. Furthermore, the availability of GPS survey data of the pavement 
markings drastically reduces the search window for the extraction process (the selection of LiDAR points obtained 
from the pavement markings). Depending on the overall LiDAR data quality, more precisely the horizontal accuracy 
of the point cloud, the actual search area is typically a narrow patch with a width of less than 1 m. Unfortunately, the 
relative nature of the LiDAR intensity signal does not allow for a general parameterization of the intensity values for 
pavement surfaces and pavement markings. Therefore, first the distribution of the intensity signals in the search 
window should be analyzed to determine an optimal threshold for separating pavement and pavement marking 
points. The points extraction based on the threshold could result in errors such as marking points are omitted or 
pavement points are included. Therefore, further checks are needed, which is accomplished by curve fitting, 
described below, where the availability of object space information can be utilized, such as curvature of the 
pavement markings. To illustrate the difficulty of the extraction process, Figure 3 shows the troubling case when the 
LiDAR scan line is near parallel to the pavement marking. 
 

52



ASPRS 2008 Annual Conference 
Portland, Oregon  April 28 - May 2, 2008 

 
 

Figure 2. Concept of extracting pavement markings and using them as ground control. 
 
 

 

Filtering the LiDAR points around the pavement markings (few m) by intensity 
thresholding; the road pavement has low intensity value while the pavement markings 

exhibit higher intensities. The threshold is adaptively defined by analyzing the histogram 
of the LiDAR intensity values of the road surface around the surveyed road pavement 
marking and/or by examining intensity values of road surface profiles (LiDAR scan-

lines). 

Extraction of LiDAR points of road pavement markings from the pre-filtered data set 
(road pavement points removed) within search windows defined by surveyed data of the 
road pavement markings; the location of the LiDAR points of the pavement markings is 

assumed to be within ±1 m from their true location.

Estimation of the LiDAR elevation of the pavement markings based on the average 
elevation of the pavement data around the markings (reducing/eliminating need for 

intensity-based range correction)

Stop bars 

Weighted least squares line 
fitting  

Edge lines (straight)

Piecewise weighted least squares 
line fitting 

Edge lines (curved) 

Piecewise weighted least squares 
curve fitting  

Ψ-s representation of the fitted 
curve 

 

Ψ-s representation of the curve 
fitted to the surveyed road 
pavement marking points 

Cross-correlation between the 
two Ψ-s curves to determine 

corresponding points between the 
two curves  

Calculation of a 2D/3D 
transformation between the two 

curves based on the 
corresponding points 

Surrounding areas of the surveyed road pavement marking features are extracted from the 
LiDAR point cloud data (~50 m vicinity)

 

Establishing a 2D/3D transformation based on linear features

Analyzing results, based on magnitude and distribution of residuals, creating QA/QC report; 
if needed, deciding on the complexity of the transformation that will be applied to the LiDAR point cloud  
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(a) (b) 

 
Figure 3. Changes of intensity values along pavement markings: LiDAR point locations overlaid 

 on optical image (a) and intensity values (b). 
 

Curve Fitting  
The purpose of curve fitting is twofold: first, it provides a validity check for the pavement marking points 

extracted, and second, it allows for modeling both pavement marking descriptions as linear features, so they can be 
matched to each other. The selected curve fitting method is an extended version of the algorithm, originally 
proposed by Ichida and Kiyono in 1977, and is a piecewise weighted least squares curve fitting based on cubic 
(third-order polynomial) model, which seemed to be adequate for our conditions, linear features with modest 
curving. To handle any kind of curves, defined as the locus of points f(x, y) = 0 where f(x, y) is a polynomial, the 
curve fitting is performed for smaller segments in local coordinate systems, which are defined by the end points of 
the curve segments. The primary advantage of using a local coordinate system is to avoid problems when curves 
become vertical in the mapping coordinate system. Obviously, the fitting results as well as the fitting constraints are 
always converted forth and back between the local and mapping coordinate frames. 

The main steps of the piecewise cubic fitting (PCF) process are shortly discussed below; the notation used in the 
discussion is introduced in Figure 4. To achieve a smooth curve, the curve fitting to any segment is constrained by 
its neighbors by enforcing an identical curvature at the segment connection points; in other words, PCF polynomial 
is continuous with its first derivative at connection points x=s, x=t, etc. The equations describing the third-order 
polynomial and its first derivative are: 
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Figure 4. Piecewise weighted least squares curve fitting method. 

 
The core processing includes the following steps: 1) aS and bS, the coefficients of the second and third order 

terms of the fitted curve for interval ‘i’ are estimated; consider the constant term (yS) and the coefficient of the first 
order term (mS) fixed, known from the curve fitting from the previous segment. In the adjustment, the points in 
interval Δ i2+ i+Δ i1 (past, present, and future data points) are used, 2) the value (yt) and the slope (mt) at x=t are 
computed; these values as fixed constraints are used in the curve fitting for the next segment, and 3) step 1 is 
repeated to process the next segment.  
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The curve fitting allows for a polyline representation of both data types, LiDAR or GPS, with a user-defined 

spacing and thus can effectively curve fitting. Figure 5 shows curve fitted to LiDAR points as well as a case where 
both data data sets were modeled by curves. 
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(a) (b) 

 
Figure 5. Curve fitting:  

(a) LiDAR points (blue) and fitted curve (red) 
(b) LiDAR data and GPS-surveyed points (magenta) and fitted curve (cyan). 

 
Curve Matching  

The objective of curve matching is to find the spatial relationship between two data representations of the 
pavement markings. Because there is no point-to-point correspondence between the two data sets, point-based 
transformations are directly not applicable. Furthermore, the somewhat modest horizontal accuracy of the LiDAR 
points is an additional disadvantage. Using linear features, however, presents a solution that is less sensitive 
compared to point-based methods. Assuming that the two representations, such as the curve fitted ones, provide an 
adequate description of the same shape, the problem is simply how to match two free-shape curves. The pavement 
markings descriptions in both original and curve-fitted format are spatially close to each other, the well-known 
Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992; Madhavan et al., 2005) was selected to perform that 
task. 

Iterative registration algorithms are increasingly used for registering 2D/3D curves and range images recently. 
The ICP algorithm is adopted here to match curves describing pavement markings obtained from LiDAR intensity 
and GPS measurements. The ICP algorithm finds the best correspondence between two curves (point sets) by 
iteratively determining the translations and rotations parameters of a 2D/3D rigid body transformation. 
 

∑ +−
i

iiTR TRDM
2

),( )(min  

where R is a 3*3 rotation matrix, T is a 3*1 translation vector and subscript i refer to the corresponding points of the 
sets M (model) and D (data). The ICP algorithm can be summarized as follows: 

1. For each point in D, compute the closest point in M 
2. Compute the incremental transformation (R, T)  
3. Apply incremental transformation from step (2) to D 
4. If relative changes in R and T are less than a  given threshold, terminate, otherwise go to step (1) 
ICP can be applied to individual pavement markings or to a group of pavement markings. Figure 6 shows an 

intersection where four lines were matched. 
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Figure 6. Curve matching based on four curves; magenta: curves fitted to control points, red: GPS control points, 
blue: curve points derived from LiDAR, and cyan: transformed curve points after ICP. 

 
 

EXPERIMENTAL RESULTS 
 

To support performance testing of the proposed method, the Ohio Department of Transportation surveyed 
several intersections in an area which was recently LiDAR surveyed. The pavement markings were surveyed using a 
VRS system with about 1-2 cm horizontal and 2-5 cm vertical accuracy; the point spacing varied in the 1-3 pts/m 
range. Figure 7 shows an area with linear pavement markings measured from the LiDAR intensity data as well as 
the GPS points; for better illustration only the operator-measured LiDAR points, which were considered as reference, 
are shown. Note the small yet clearly visible misfit between the two point sets. 
 

 
 

Figure 7. Intersection with pavements markings measured from LiDAR intensity data (points marked yellow) and 
GPS-surveyed points (blue). 
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In the curve fitting process both data representations were fitted, with a point spacing of 1 cm, and various 
combinations were processed by ICP-based curve matching in 2D and 3D. In order to assess the accuracy of the 
transformation, the correspondence between the LiDAR-derived curve and the control curve were established. Since 
the two curves in general are not totally identical, even after the final ICP iteration, the transformed LiDAR-derived 
points are close but not necessarily fall on the control curve. However, the location of the transformed LiDAR-
derived points represents the best fit to the control curve in least squares sense. Therefore, these points are projected 
to the closest points of the control curve, and then they are considered as conjugate points. The transformation 
parameters between these two point sets (the original LiDAR-derived points and their corresponding points on the 
control curve) are calculated in a least squares adjustment. In this computation, the 2D transformation parameters for 
a representative test data set were estimated at σΔX = ± 0.013m, σΔY = ± 0.010m, and σangle = ± 1.95 arcmin, 
indicating that a good match was found with the ICP method. The numerical values, including the transformation 
parameters and error terms, are listed in Tables I and II. 

 
Table 1. Transformation results (2D). 

 
Transformation 

parameter 
ICP-adjusted 
results [m, °] 

Estimated 
accuracy [cm, °] 

ΔX 0.041 0.013 
ΔY -0.023 0.010 
ϕ -0.000 0.03 

 
The ~2 cm horizontal accuracy could be considered excellent given the fact that the GPS-surveyed points are 

known, at best, 1 cm-level accuracy and the LiDAR-based pavement marking positioning accuracy is estimated at 
the few cm range.  

Since the overall LiDAR data quality used for testing was quite good, the discrepancies found at several 
intersections were rather small, a simulated error was introduced to test the method for less than ideal situations. 
Using the same data set, a 16 and -4 cm horizontal offset was added to the X and Y coordinates of the LiDAR point 
measurements, respectively. Tables II and III show the residuals measured at the pavement markings before and 
after the correction. 
 

Table 2. Initial residuals. 
 

 
 
 

 
Table 3. Residuals after correction. 

 
 
 

 
 

 
CONCLUSION 

 
The introduced method to use pavement markings as ground control showed good initial performance. Using a 

data set acquired by a state-of-the-art LiDAR system, the performance of the three main processing steps was 
validated. In all the cases, the curve fitting and ICP-based matching delivered robust results. The extraction of 
pavement markings, however, has experienced difficulties in some cases where the intensity data were noisier. A 
key advantage of using pavement markings is that they can be quickly surveyed with GPS VRS technique. 
 

 ΔX [m] ΔY [m] 
Mean 0.158 -0.036 
STD 0.048 0.045 

 ΔX [m] ΔY [m] 
Mean 0.000 -0.000 
STD 0.048 0.045 
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ABSTRACT: 
 
LiDAR technology became an indispensable airborne mapping tool in recent years and is the primary source of highly accurate 
surface data at large scale. Although, the ranging accuracy of the laser sensor strongly depends on the surface characteristics, by and 
large, it falls in to the few cm range. This also implies that the achieved accuracy of a LiDAR system, defined in terms of the 
absolute accuracy of the laser points, is predominantly determined by the quality of the navigation solution (typically based on 
GPS/IMU sensor integration). Despite significant advancements in navigation technologies recently, to achieve and sustain a high 
accuracy navigation solution of an airborne platform for extended time is still a difficult task. Furthermore, there is no reliable way 
to assess the positioning quality of the data captured by any imaging sensor systems, which are based on direct georeferencing. 
Therefore, using some ground control is almost mandatory if high accuracy is required. This paper introduces a method to use road 
pavement marking as ground control that could be used for QA/QC. These linear features are widely available in urban areas and 
along transportation corridors, where most of the government and commercial mapping takes place. A key advantage of using 
pavement markings is that they can be quickly surveyed with GPS VRS technique. 
 
 

                                                                 
* Corresponding author. 

1. INTRODUCTION 

The introduction of airborne LiDAR (Light Detection And 
Ranging) in the late nineties was followed by a quick 
proliferation of the technology, and LiDAR is now the primary 
surface data extraction mapping technique. This remarkable 
success is mainly due to the fact that LiDAR data are explicit 
and the processing can be highly automated plus that an 
unprecedented vertical accuracy could be obtained relatively 
easily. The horizontal accuracy of the LiDAR data was not a 
concern in the early use of this technology. In fact, the first 
LiDAR data QA/QC and product characterization effort did 
only deal with the vertical accuracy (ASPRS, 2004).  
 
As the LiDAR market started to grow rapidly, soon the LiDAR 
systems showed truly phenomenal performance improvements. 
In less than five years, the pulse rate improved by an order and 
now 100 and 150 kHz systems are widely used (Optech, 2006 
and Leica, 2006) and experimental two-pulse systems are also 
available. More importantly, the ranging accuracy has increased 
substantially and now stands close to the level of static GPS 
surveys, i.e., 1-2 cm for hard surfaces, which is practically 
negligible to the typical navigation error budget. This 
remarkable performance potential of the newer LiDAR systems, 
combined with better operational techniques, opened the door 
toward applications where large-scale or engineering-scale 
accuracy is required. At this point the georeferencing error 
budget and, to a lesser extent, the sensor calibration quality, are 
critical to achieving engineering design level accuracy (few 
cm). Using ground control is an effective way to compensate 
for georeferencing and sensor modeling errors. In addition, 
ground control can provide for independent and highly reliable 
QA/QC processes.  

This paper proposes a method to use road pavement markings 
as ground control to assess the quality of the LiDAR data as 
well as to improve the point cloud accuracy by post-processing. 
Beyond their wide availability, the use of pavement markings is 
primarily motivated by the fact that they can be rather easily 
surveyed using GPS VRS (Virtual Reference System) 
technology; the process is fast, typically it takes one minute to 
survey a point, and the accuracy, in general, is about 2-3 and 3-
6 cm horizontally and vertically, respectively. 
 

2. LIDAR ACCURACY AND ERROR CORRECTION 
TECHNIQUES 

The errors in laser scanning data can come from individual 
sensor calibration or measurement errors, lack of 
synchronization, or misalignment between the different sensors. 
Baltsavias (1999) presents an overview of the basic relations 
and error formulae concerning airborne laser scanning. Schenk 
(2001) provides a summary of the major error sources for 
airborne laser scanners and error formulas focusing on the 
effect of systematic errors on point positioning. In general, 
LiDAR sensor calibration includes scan angle, range calibration 
and intensity-based range correction. The LiDAR sensor 
platform orientation is always provided by a GPS/IMU-based 
integrated navigation system. The connection between the 
navigation and LiDAR sensor frames is described by the 
mounting bias, which is composed of the offset between the 
origin of the two coordinate systems and the boresight 
misalignment (the boresight misalignment describes the rotation 
between the two coordinate systems, and is usually expressed 
by roll, pitch and heading angles). To achieve optimal error 
compensation that assures the highest accuracy of the final 
product, all of these parameters should be calibrated. Since not 
all of the parameters can be calibrated in a laboratory 
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environment, a combination of laboratory and in situ 
calibrations is the only viable option for LiDAR system 
calibration. Typical anomalies in the LiDAR data indicating 
system calibration errors are: edges of the strips could bend up 
or down (scan angle error), horizontal surfaces have a visible 
mismatch between the known and the LiDAR point-defined 
surfaces (boresight misalignment or navigation error), vertical 
coordinates of LiDAR points over flat areas do not match the 
known vertical coordinate of the area (ranging or navigation 
error), objects, such as pavement markings made of retro 
reflective coatings, may show up above the surface level, 
although they should practically have identical vertical 
coordinates (lack of intensity correction of the range data), etc. 
 
The techniques to detect and ultimately compensate for errors 
fall into two broad categories based on whether they use 
absolute control or not. The first group includes most of the 
strip adjustment techniques and some of the sensor and 
boresight calibration methods. The ground control-based 
techniques encompass comparisons to reference surfaces, such 
as parking lots and buildings, and methods using LiDAR-
specific control targets. 
 
Strip adjustment methods primarily minimize the vertical 
discrepancies between overlapping strips or between strips and 
horizontal control surfaces. These strip adjustments can be 
referred to as one-dimensional strip adjustment methods 
(Crombaghs et al., 2000; Kager and Kraus, 2001); tie or 
absolute control features used for this adjustment are flat 
horizontal surfaces. The problem with this kind of adjustment is 
that existing planimetric errors are likely to remain in the data. 
Vosselman and Maas (2001) have shown that systematic 
planimetric errors are often much more significant than vertical 
errors in LiDAR data and, therefore, a 3D strip adjustment is 
the desirable solution minimizing the 3D discrepancies between 
overlapping strips and at control points. A number of 3D 
adjustment methods have been published. Kilian et al. (1996) 
presented a method of transforming overlapping LiDAR strips 
to make them coincide with each other using control and tie 
points in a way similar to photogrammetric block adjustment. 
Burman (2002) treated the discrepancies between overlapping 
strips as positioning and orientation errors with special attention 
given to the alignment error between the IMU and laser scanner 
(Soininen, 2005). Filin (2003) presented a similar method for 
recovering the systematic errors; the method is based on 
constraining the position of the laser points to the surface from 
which it was reflected. Toth et al. (2002) presented a method 
that tried to make overlapping strips coincide, with the primary 
objective of recovering the boresight misalignment between the 
IMU and laser sensor. 
 
LiDAR-specific ground control targets were introduced by Toth 
and Brzezinska (2005; Csanyi et al., 2005).  The proposed 
technique uses ground control targets specifically designed for 
LiDAR data to provide quality control for applications that 
require cm-level, engineering scale mapping accuracy. 
Simulation results confirmed that the optimal target is rotation 
invariant, circular-shaped, elevated from the ground and that a 
flat target with 1 m circle radius can provide sufficient accuracy 
from a point density of about 5 pts/m2. Targets larger than 2 m 
in diameter will not lead to significant improvements. In 
addition, a two-concentric-circle design (the inner circle has 
one-half the radius of the outer circle) with different coatings 
can produce considerable accuracy improvements in the 
horizontal position. Details and performance evaluation can be 
found in (Csanyi and Toth, 2007).  

3. LIDAR INTENSITY DATA 

The introduction of intensity data a few years ago produced 
unrealistically high initial expectations. On one side, the 
visualization value provided a major help for interactive 
processing, and thus, users could immediately benefit from the 
new source of data, as LiDAR intensity was comparable to 
optical image type of data that had been missed by practitioners 
from the early beginning. On the other side, the algorithmic 
advantages of using intensity data for providing better LiDAR 
data processing were largely overestimated. While research 
instantly started to address the exploitation of the new source of 
information, the problem seemed to be harder than expected. In 
simple terms, the major difficulty of working with LiDAR 
intensity data is the relative nature of this signal. For example, 
different surfaces, data from different flying heights, and 
different surface orientations can produce exactly the same 
intensity values. Therefore, techniques to calibrate the intensity 
and range values with respect to each other started to become 
more common.  
 
One of the first attempts on using intensity data dates back to 
the time when LiDAR intensity data were not yet commercially 
available. Maas (2001) describes the extension of a TIN-based 
matching technique using reflectance data (LiDAR intensity 
data) to replace surface height texture for the determination of 
planimetric strip offsets in flat areas with sufficient reflectance 
texture. As an extension, Vosselman (2002) offers another 
solution, kind of a feature-based matching, to avoid 
interpolation of the data, using linear features, gable roofs, and 
ditches, modeled by analytical functions that can provide 
accurate offset determination. Later, research interest steered 
toward conventional classification use of the intensity data. 
Song et al. (2002) proposed a technique to use intensity data for 
land-cover classification. A similar study on using intensity for 
glacier classification is presented in Lutz et al. (2003). A recent 
review of more advanced versions of these techniques is offered 
by Hasegawa (2006). A comprehensive study on processing 
both range and intensity data is provided by Sithole (2005). 
Kaasasalainen et al. (2005) provides a review on intensity data 
with respect to calibration. Nobrega and O’Hara (2006) 
compare two techniques for filtering intensity data for object 
extraction. Finally, Ahokas et al. (2006) presents the results of a 
calibration test on intensity data using the Optech ALTM 3100. 
 
Figures 1 and 2 show simultaneously acquired orthoimage and 
the LiDAR intensity image, respectively, of an intersection. The 
LiDAR point density was about 4 pts/m2 with foot print size of 
15 cm. Note that the pavement markings in the LiDAR image 
are quite visible and distinct from the pavement. Consequently, 
if the approximate location of the pavement markings is known, 
then their extraction is a fairly straightforward task. 
 
To illustrate that LiDAR elevation and intensity data are 
correlated and intensity information can indicate the presence of 
ranging error, Figure 3 shows the elevation data of the same 
intersection. Note that the pavement markings can be seen quite 
well, which conflicts with the fact that elevation value of the 
markings and the pavement around them should be identical 
(the few mm thickness of the markings is negligible compared 
to the few cm ranging accuracy of the laser system). This 
phenomenon is known and correction tables are available to 
partially compensate for this effect. The importance of this 
anomaly from our perspective is that during the comparative 
analysis later, the elevation value of the markings should be 
replaced by the average elevation of the pavement. 
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Figure 1. Typical pavement markings at an intersection. 
 

 
 

Figure 2. LiDAR intensity image. 
 

 
 

Figure 3. LiDAR elevation data. 

4. EXTRACTING PAVEMENT MARKINGS AND 
USING THEM AS GROUND CONTROL 

The concept of the proposed method, including pavement 
marking extraction as well as parameterization of the marks 
based on LiDAR intensity data, the comparison with ground 
truth, and the determination of a transformation to correct the 
point cloud, analysis of result, etc., is shown in Figure 4. 
General assumptions are that the survey data of the pavement 
markings are available a priori and the individual point 
accuracy, describing the marks, is known at the cm-level. To 
achieve good performance, sufficient number of pavement 
markings is required with good spatial distribution. At this point 
only three types of pavement markings are considered: Stop 
bars, straight edge lines and curved edge lines; Figure 1 shows 
the three pavement marking types. The survey data of the 
pavement markings is provided as point observations along the 
centerline of the markings. The LiDAR data, including range 
and intensity components, are assumed to be of reasonable 
quality; i.e., the point cloud accuracy is better than a meter. 
 

 
 

Figure 4. Block diagram of the proposed method. 
 
Based on the comparison of the two descriptions of pavement 
markings, one obtained from the GPS survey and the other one 
form LiDAR intensity data, offset and orientation differences 
can be detected. Depending on the magnitude of the observed 
differences and their spatial distribution, a variety of corrections 
can be applied to the LiDAR point cloud to improve the point 
position accuracy. For example, if there is a similar vertical 
shift detected at the control features, a common vertical offset 
correction can be applied. If the amount of vertical shift 
detected varies by location and/or combined with non negligible 
horizontal differences, a more complex model, such as a 3D 
similarity transformation can be applied. Note that assessing the 
horizontal accuracy is difficult, as it is mainly defined by the 
footprint of the laser pulse, which depends on flying height and 
beam convergence; in addition, the impact of object surface 
characteristics could be also significant. The transformation 
based on the observed differences can be formulated on both, 
point- and linear feature-based least squares adjustment 
techniques. The conventional control point-based method is 
rather straightforward; similar to an absolute orientation of a 
stereo model with fixed scale. Linear feature-based orientation 
is less widely used, but could be feasible given the availability 
of matched linear features. Finally, if the differences are out of 
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the usual range (gross errors), the process can indicate system 
malfunctioning.  
 
In our case, the point-based transformation is directly not 
applicable, as there is no point-to-point correspondence 
between the two point sets that describe the same linear feature. 
Assuming that the two representations provide an adequate 
description of the same shape, the problem is simply how to 
match two free-shape curves. In the following, the two key 
components of the proposed method, curve fitting and matching 
are discussed at detail. 
 
4.1 Curve fitting 

The extracted LiDAR points of the pavement markings and 
their surveyed data should be modeled as linear features in 
order to be matched with each other. The selected method is an 
extended version of the algorithm, originally proposed by 
Ichida and Kiyono in 1977, and is a piecewise weighted least 
squares curve fitting based on cubic (third-order polynomial) 
model, which seemed to be adequate for our conditions. To 
handle any kind of curves, defined as the locus of points f(x, y) 
= 0 where f(x, y) is a polynomial, the curve fitting is performed 
for smaller segments in local coordinate systems, which are 
defined by the end points of the curve segments. The primary 
advantage of using a local coordinate system is to avoid 
problems when curves become vertical in the mapping 
coordinate system. Figure 5 shows the concept of the local 
coordinate system used for curve fitting; obviously, the fitting 
results as well as the fitting constraints are always converted 
forth and back between the local and mapping coordinate 
frames. 
 

 
Figure 5. The curve fitting is done in local coordinate system, 

oriented to curve segment. 
 
The main steps of the piecewise cubic fitting (PCF) process are 
shortly discussed below; the notation used in the discussion is 
introduced in Figure 6. To achieve a smooth curve, the curve 
fitting to any segment is constrained by its neighbors by 
enforcing an identical curvature at the segment connection 
points; in other words, PCF polynomial is continuous with its 
first derivative at connection points x=s, x=t, etc. The equations 
describing the third-order polynomial and its first derivative 
are: 
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Figure 6. Piecewise weighted least squares curve fitting 

method. 
 
The core processing includes the following steps: 1) aS and bS, 
the coefficients of the second and third order terms of the fitted 
curve for interval ‘i’ are estimated; consider the constant term 
(yS) and the coefficient of the first order term (mS) fixed, known 
from the curve fitting from the previous segment. In the 
adjustment, the points in interval ∆ i2+ i+∆ i1 (past, present, and 
future data points) are used, 2) the value (yt) and the slope (mt) 
at x=t are computed; these values as fixed constraints are used 
in the curve fitting for the next segment, and 3) step 1 is 
repeated to process the next segment.  
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4.2 Matching curves 

Iterative registration algorithms are increasingly used for 
registering 2D/3D curves and range images recently. The well-
known Iterative Closest Point (ICP) algorithm (Besl and 
McKay, 1992; Madhavan et al., 2005) is adopted here to match 
curves describing pavement markings obtained from LiDAR 
intensity and GPS measurements. The ICP algorithm finds the 
best correspondence between two curves (point sets) by 
iteratively determining the translations and rotations parameters 
of a 2D/3D rigid body transformation. 

∑ +−
i

iiTR TRDM
2

),( )(min  

Where R is a 2*2 rotation matrix, T is a 2*1 translation vector 
and subscript i refer to the corresponding points of the sets M 
(model) and D (data). The ICP algorithm can be summarized as 
follows: 

1. For each point in D, compute the closest point in M 
2. Compute the incremental transformation (R, T)  
3. Apply incremental transformation from step (2) to D 
4. If relative changes in R and T are less than a  given 

threshold, terminate, otherwise go to step (1) 
 
Our 2D ICP was implemented in Matlab and space-scale 
optimization was incorporated to reduce execution time.  
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5. EXPRIMENTAL RESULTS 

To perform an initial performance test of the proposed method, 
a typical intersection was selected from a recently flown 
LiDAR survey, where GPS-surveyed pavement markings were 
available. Figure 7 shows the area with linear pavement 
markings measured from the LiDAR intensity data as well as 
the GPS points. Note the clearly visible misfit between the two 
point sets; the horizontal accuracy of the GPS-surveyed points, 
provided by the Ohio Department of Transportation VRS 
system is 1-2 cm.  
 
The LiDAR point-based description of the pavement markings 
was obtained by filtering. The search space was defined by the 
GPS control points (pavement markings are assumed to be 
within ±1 m of their true location) and intensity thresholding 
was used to extract the linear features; the road pavement has 
low intensity value while the pavement markings exhibit higher 
intensities. The threshold is adaptively defined by analyzing the 
histogram of the LiDAR intensity values of the road surface 
around the surveyed road pavement markings and/or by 
examining intensity values of road surface profiles (LiDAR 
scan-lines). 
 

 
Figure 7. Intersection with pavements markings measured from 

LiDAR intensity data (white) and GPS-surveyed (blue). 
 
In the curve-fitting step, both representations of the linear 
features are computed according the algorithm described in 4.1. 
Figure 8 shows one example of the fitted curves for the west 
curb line.  
 

 
Figure 8. Curve fitting based on LiDAR and GPS points. 

The results of the ICP-based curve matching for all the four 
curve lines is shown in Figure 9. Visually, the transformation 
shows a good fit; the blue points nicely fall on the GPS-defined 
curves. Note that the original curve points, derived from 
LiDAR, moved to the control curve similarly, as opposed to 
they would move if the individual curves had matched. Figure 
10 shows the results of curve matching for the lower straight 
pavement line, including both the transformation results; as 
expected the individual transformation implements a 
perpendicular projection to the control curve. 

 
Figure 9. Curve matching based on all the four curves; magenta: 

curves fitted to control points, red: GPS control points, blue: 
curve points derived from LiDAR, and cyan: transformed curve 

points (derived from LiDAR). 

 
Figure 10. Comparing individual and combined curve fitting to 

a straight feature; magenta: reference curve, cyan: points 
derived from LiDAR, blue: transformed points based on single 

curve matching, and black: transformed points based on 
matching all the four curves together. 

 
To assess in actual numbers the accuracy of the transformation, 
obtained by the ICP-based curve matching, correspondence 
between the LiDAR-derived curve and the control curve were 
established. Since the two curves in general are not totally 
identical, even after the final ICP iteration, the transformed 
LiDAR-derived points are close but not necessarily fall on the 
control curve. However, the location of the transformed 
LiDAR-derived points represents the best fit to the control 
curve in least squares sense. Therefore, these points are 
projected to the closest points of the control curve, and then 
they are considered as conjugate points. The transformation 
parameters between these two point sets (the original LiDAR-
derived points and their corresponding points on the control 
curve) are calculated in a least squares adjustment. In this 
computation, the transformation parameters for the test data 
were estimated at σ∆X = ± 0.013m, σ∆Y = ± 0.017m, and σangle = 
± 1.95 arcmin, indicating that a good match was found with the 
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ICP method for the spatially well distributed test data set. The 
numerical values, including the transformation parameters, 
error terms, and dispersion matrix are listed in Tables I and II. 
 

Transformation 
parameter 

ICP-adjusted 
results [m, °] 

Estimated 
accuracy [cm, °] 

∆X 0.46 0.013 
∆Y -0.08 0.017 
ϕ -0.09 0.03 

Table I. Transformation results (2D). 
 

 0.1789 -0.1699 -0.0063 
1.0e-003 * -0.1699 0.2902 0.0087 

 -0.0063 0.0087 0.0003 
Table II. A posteriori dispersion matrix. 

 
The ~2 cm horizontal accuracy is reasonable given the fact that 
the GPS-surveyed points are known at 1 cm-level accuracy and 
the LiDAR-based pavement marking positioning accuracy is 
estimated at the few cm range.  
 

6. CONCLUSION 

The introduced method to automate the use of pavement 
markings as ground control showed good initial performance. 
Both the curve fitting and ICP-based matching delivered robust 
results. Further research will consider the extension of 
technique to 3D. 
 
References: 
 

Ahokas, E., Kaassalainen, S., Hyyppa, J. and Suomalainen, J., 
2006. Calibration of the Optech ALTM 3100 Laser Scanner 
Intensity Data Using Brightness Targets, Proceedings of ISPRS 
Commission I. Symposium. 

ASPRS LiDAR Committee, 2004. ASPRS Guidelines Vertical 
Accuracy Reporting for LiDAR Data 

http://www.asprs.org/society/committees/lidar/Downloads/Vertical
_Accuracy_Reporting_for_Lidar_Data.pdf  

Baltsavias, E.P., 1999. Airborne Laser Scanning: Basic Relations 
and Formulas. ISPRS Journal of Photogrammetry & Remote 
Sensing, Vol. 54: 199-214. 

Besl, P. J. and McKay, N. D. A method for registration of 3-d 
shapes. IEEE Trans. Pat. Anal. and Mach. Intel. 14(2), pp 239-256, 
Feb 1992. 

Burman, H. ,2002. Laser Strip Adjustment for Data Calibration and 
Verification. International Archives of Photogrammetry and 
Remote Sensing, 34 (Part 3A): 67-72. 

Crombaghs, M. J.E., R. Brügelmann, E.J. de Min, 2000. On the 
Adjustment of Overlapping Strips of Laseraltimeter Height Data. 
International Archives of Photogrammetry and Remote Sensing, 33, 
(Part B3/1):224-231. 

Csanyi N, Toth C., Grejner-Brzezinska D. and Ray J., 2005. 
Improving LiDAR data accuracy using LiDAR-specific ground 
targets, ASPRS Annual Conference, Baltimore, MD, March 7-11, 
CD-ROM. 

Csanyi, N. and Toth, C., 2007. Improvement of LiDAR Data 
Accuracy Using LiDAR-Specific Ground Targets, 
Photogrammetric Engineering & Remote Sensing, Vol. 73, No. 4, 
pp. 385-396. 

Filin, S., and Vosselman, G., 2004. Adjustment of Airborne Laser 
Altimetry Strips. International Archives of Photogrammetry, 
Remote Sensing and Spatial Information Sciences 34 (Part B) pp. 
285-289. 

Hasegawa, H., 2006. Evaluations of LiDAR Reflectance Amplitude 
Sensitivity Towards Land Cover Conditions, Bulletin of the 
Geographical Survey Institute, Vol. 53. 

Ichida, K. and Kiyono, T.1977. Curve Fitting with One-Pass 
Method with a Piecewise Cubic Polynomial, ACM Transactions on 
Mathematical Software, Vol. 3, No. 2, pp. 164-174. 

Kager, H. and Kraus, K., 2001. Height Discrepancies between 
Overlapping Laser Scanner Strips. Proceedings of Optical 3D 
Measurement Techniques V, Vienna, Austria: 103-110. 

Kaassalainen, S., Ahokas, E., Hyyppa, J. and Suomalainen, J., 
2005. Study of Surface Brightness from Backscattered Laser 
Intensity: Calibration of Laser Data, IEEE Geoscience and Remote 
Sensing Letters, 2(3):255-259. 

Kilian J., Haala, N., Englich, M., 1996. Capture and Evaluation of 
Airborne Laser Scanner Data. International Archives of 
Photogrammetry and Remote Sensing, 31 (Part B3):383-388. 

Leica Geosystems, ALS50, http://gis.leica-geosystems.com  

Lutz, E., Geist, Th. and Stötter, J., 2003. Investigations of Airborne 
Laser Scanning Signal Intensity on Glacial Surfaces - Utilizing 
Comprehensive Laser Geometry Modeling and Orthophoto Surface 
Modeling (A Case Study: Svartisheibreen, Norway), proceedings of 
ISPRS Commission III, WG 3. 

Maas, H.-G., 2001. On the Use of Pulse Reflectance Data for 
Laserscanner Strip Adjustment. International Archives of 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, 33 (Part 3/W4): 53-56. 

Madhavan, R., Hong, T., Messina, E. Temporal Range Registration 
for Unmanned Ground and Aerial Vehicles, Journal of Intelligent 
and Robotic Systems, Volume 44, Number 1 / September, 2005, pp. 
47-69. 

Nobrega, R. and O’Hara, C., 2006. Segmentation and Object 
Extraction from Anisotropic Diffusion Filtered LiDAR Intensity 
Data. 

Optech, ALTM 3100AE, 2006, 
www.optech.ca/pdf/Brochures/ALTM3100EAwspecsfnl.pdf   

Schenk, T., 2001. Modeling and Analyzing Systematic Errors in 
Airborne Laser Scanners. Technical Notes in Photogrammetry, vol. 
19. The Ohio State University, Columbus, USA. 

Sithole, G., 2005. Segmentation and Classification of Airborne 
Laser Scanner Data, Publication of Geodesy 59, Nederlandse 
Commissie voor Geodesie, Delft (184 pages). 

Song, J-H., Han, S-H., Yu, K, and Kim, Y., 2002. Assessing the 
Possibility of Land-Cover Classification Using LiDAR Intensity 
Data, International Archives of Photogrammetry, 34. pp. 4. 

Toth C., Csanyi N. and Grejner-Brzezinska D. 2002. Automating 
the Calibration of Airborne Multisensor Imaging Systems, Proc. 
ACSM-ASPRS Annual Conference, Washington, DC, April 19-26, 
CD ROM. 

Toth, C. and Grejner-Brzezinska, D., 2005. Geo-referenced Digital 
Data Acquisition and Processing Systems Using LiDAR 
Technology – Final report, ODOT State Job No. 147990. 

Vosselman, G., and Mass, H.-G., 2001. Adjustment and Filtering of 
Raw Laser Altimetry Data. Proc. OEEPE Workshop on Airborne 
Laserscanning and Interferometric SAR for Detailed Digital 
Elevation Models. OEEPE Publication 40, Stockholm, Sweden. pp. 
62-72. 

Vosselman, G., 2002. On the Estimation of Planimetric Offsets in 
Laser Altimetry Data. International Archives of Photogrammetry 
and Remote Sensing, 34 (Part 3A): 375-380. 

Vosselman, G., 2002. Strip Offset Estimation Using Linear 
Features. 3rd International LIDAR Workshop, October 7-9, 
Columbus, 
http://www.itc.nl/personal/vosselman/papers/vosselman2002.colum
bus.pdf

65



Airborne LiDAR Reflective Linear Feature Extraction for Strip Adjustment and Horizontal Accuracy Determination   
 

 

APPENDIX B 
 

Project Review Presentation  
 
 

ASPRS WGLR/EGLR Joint Summer Meeting, June 13, 2008 

 

66



ASPRS WGL/EGL Joint Summer Meeting         
June 13, 2008

1

Quality Assessment of LiDAR Data by 
Using Pavement Markings 

Charles Toth

Center for Mapping

The Ohio State University

toth@cfm.ohio-state.edu

Motivation

Engineering-scale mapping effort at ODOT

LiDAR product characterization,  accuracy reporting
QA/QC process

General expectations vary

Object space characteristics frequently ignored

Direct georeferencing
Extrapolation, different error characteristics

No direct redundancy (strip overlap with different samples!)

Ground control in needed as independent validation
Dedicated targets vs. natural or man-made objects such as 
reflective pavement markings: less labor-intense, requires limited 
surveying and imposes less restrictions in normal field operations 
existing features

Finding conjugate entities (points, linear features)
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June 13, 2008
2
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Develop algorithms to automatically extract road pavement 
markings from the LiDAR intensity data 

Develop methods to create best-fit lines/curves to the extracted 
LiDAR points

Perform a comparison of the control points to the best-fit curve of  
the features

Improve both horizontal and vertical accuracy of the LiDAR data

Provide a measure of the horizontal accuracy

Evaluate the horizontal accuracy of LiDAR data as well as 
quantify the horizontal and vertical product accuracies

Objectives

Exploit the good/distinct reflective characteristics of road pavement 
markings for LiDAR QA/QC

Apply results to LiDAR data
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Stop bar Curved edge

Straight edge

Optical image LiDAR intensity LiDAR elevation

Pavement Marking as Ground Control

Problems: 

How to measure and characterize features from LiDAR

How to find correspondence between measurements based on LiDAR  
and GPS-surveyed ground control
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LiDAR Targets 

Target 104

Target 204
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LiDAR Targets in Elevation Data 

Target 104
Target 204
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Typical Situation (Area 1)

Blue: GPS control points

White: points derived from LiDAR (digitized points)
ASPRS WGL/EGL Joint Summer Meeting         

June 13, 2008

ASPRS WGL/EGL Joint Summer Meeting         
June 13, 2008

8

Finding the Closest Point

Virtual matching point

Closest point from the set of the surveyed 
control points

Virtual matching point is given by the normal distance from 
the digitized point to the control curve; i.e., the line going 
through the digitized point and the virtual matching point is 
perpendicular to the tangent of the control curve at the virtual
matching point
To find the virtual matching point, a curve is needed to be fit 
to the control points

- control points
- digitized point

70



9

The Proposed Concept
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Extraction of pavement 
markings from LiDAR, 

based on intensity

Piecewise weighted 
least squares curve 

ICP-based matching, establishing 2D/3D transformation 

Analyzing results, based on magnitude and distribution 
of residuals, creating QA/QC report; if needed, deciding 

on the complexity of the transformation that will be 
applied to the LiDAR point cloud  

Piecewise weighted 
least squares curve 

GPS-surveyed ground 
control points 

Processed LiDAR point 
cloud and intensity data 
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Extraction of LiDAR points reflected from the GPS-
surveyed pavement markings based on intensity 
thresholding
Feasible where the intensity values of pavement 
markings are well-separable from intensity values of the 
surrounding features (pavement markings can be well-
distinguished from pavements, especially from dark 
pavement, but e.g. soil has similarly high intensity values 
as pavement markings). Automatically extracting road 
edge lines very close to soil field is a challenge, 
sometimes not feasible.

Automated Feature Extraction from LiDAR Intensity 
Data Based on Intensity Thresholding
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Area 2
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Intensity Histogram
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The Relative Nature of Intensity Data
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Curve Extraction
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Extracted Pavement Markings Points
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Mapping coordinate frame

Local coordinate frame

Curve fitting in small sections to allow for free-form curve shapes

Piecewise Curve Fitting
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Connection points

Piecewise Curve Fitting 
(Third-order Polynomial)

Continuous with 
its first derivative 
at the connection 
points

2
sssk

3
s

2
sssk

)sx(b3)sx(a2m)x(Sslope

)sx(b)sx(a)sx(my)x(S

−⋅⋅+−⋅⋅+=′=

−⋅+−⋅+−⋅+=

sk

sk

m)sx(S

y)sx(S

==′
==

76



ASPRS WGL/EGL Joint Summer Meeting         
June 13, 2008

21

Curve Fitted to LiDAR Points
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Curves Fitted to LiDAR and GPS Points
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The objective of the matching process is to find conjugate points from 
linear features in LiDAR intensity data (automatically extracted or 
manually digitized) to the control (surveyed) points and then establish an 
adequate transformation between them

The transformation parameters between the two point sets to be found 
through least squares adjustment

A rigid body transformation between two point sets is established
without having  corresponding point pairs in the two point sets 

Proposed solution: Iterative Closest Point (ICP)

ICP is applied in 2D/3D to find the best correspondence between 
the two curves (point sets).

With least squares adjustment, the 3D transformation parameters 
between the matching point sets are obtained

Matching Curves (Point Sets) 
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The ICP algorithm works in three phases:

1) Establish correspondence between pairs of features based on proximity 
(for each point in D compute the closest point in M)

2) Estimate the rigid transformation that best maps the first member of the 
pair onto the second and then 

Where R is a 2*2 rotation matrix, T is a 2*1 translation vector and 
subscript i refer to the corresponding points of the sets M (model) and D 
(data). 

3) Apply that transformation to all features in the first structure, repeat steps 
1-2 until convergence is reached

∑ +−
i

iiTR TRDM
2

),( )(min

Curve Matching Based on 

Iterative Closest Point Method (ICP)
The ICP algorithm finds the best correspondence between two curves 
(point sets) in 2D/3D by iteratively determining the translations and 
rotation parameters of a 2D/3D rigid body transformation
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ICP Algorithm Concept

(a) Two data sets;
      (blue: reference  points set, red: distorted points set)
(b), (d), (f) Finding correspondence using closest points
(c), (e) Rigidbody trasformation result
(g) Final rigidbody transformation result

(b)(a)

(d)

(c)

(f)(e)

(g)
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cyan: points derived from LiDAR (digitized points)

red: GPS control points

magenta: curves fitted to control points

blue: transformed digitized points

Results (Area 1)

CR_1

CR_2

ST_1

LN_1

CR: curve

ST: stop bar

LN: line
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Results (Area 2)

28

Computed 2D Transformation Parameters
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Transformation parameters ICP-adjusted results Estimated accuracy 
ΔX [m] 0.422 0.013 
ΔY [m] -0.048 0.013 
ϕ [°] -0.036 0.030 

 

0.1704 -0.1198 -0.0062 
-0.1198 0.1634 0.0060 
-0.0062 0.0060 0.0003 

 

Dispersion matrix

80



29

Initial Residuals - All Points 
 ΔX [m] ΔY [m] R [m] 

Mean [m] 0.410 -0.036 0.414 
Std [m] 0.048 0.045 0.048 

 
 

Final Residuals - All Points 
 ΔX [m] ΔY [m] R [m] 

Mean [m] 0.000 0.000 0.051 
Std [m] 0.048 0.045 0.040 

Initial Residuals 

Feature 
# of points / 

feature ΔX [m] ΔY [m] R [m] 

CR_1 12 0.410 -0.025 0.414 
CR_2 16 0.400 -0.031 0.402 
ST_1 9 0.416 -0.055 0.424 
LN_1 10 0.418 -0.045 0.423 

 
 

Final Residuals 

Feature 
# of points / 

feature ΔX [m] ΔY [m] R [m] 

CR_1 12 0.005 0.010 0.049 
CR_2 16 -0.010 0.009 0.053 
ST_1 9 0.007 -0.018 0.049 
LN_1 10 0.004 -0.011 0.050 

Residuals
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Fit of GPS Control Points after 

2D Transformation Applied

ASPRS WGL/EGL Joint Summer Meeting         
June 13, 2008

81



31

Transformation 
Parameter 

Estimated 
Value [m, °] 

Accuracy 
[m, °] 

ΔX 0.438 0.046 
ΔY -0.226 0.042 
ΔZ 0.054 0.004 
ω -0.0388 0.0125 
ϕ -0.0074 0.0133 
κ  0.0361 0.0078 

Computed 3D Transformation Parameters 

Vertical Adjustment after 2D Transformation Applied

Mean dZ [m] Std dZ [m] 
0.042 0.015 
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Red: GPS control points
Yellow: points derived from LiDAR (digitized points)

Test Area 3

Transformation parameters ICP-adjusted results Estimated accuracy 
ΔX [m] 0.041 0.013 
ΔY [m] -0.023 0.010 
ϕ [°] -0.000 0.030 
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ICP Performance Analysis (Area 2)

ICP input data 
ICP-adjusted 

transformation parameters 
ΔX [m] ΔY [m] ϕ [°] 

Both, LiDAR and GPS points are 
curve-fitted 

0.153 -0.114 0.000 

No fitting of LiDAR points, GPS 
points curve-fitted 0.150 -0.114 0.000 

No fitting of GPS points, LiDAR 
points curve-fitted 

0.158 -0.116 0.000 

 

Case 

Differences/Residuals 
X [m] Y[m] 

Before After Before After 
mean Std mean std mean std mean Std 

1 0.16 0.02 0.00 0.02 -0.11 0.02 0.00 0.02 
2 0.16 0.10 0.00 0.10 -0.12 0.09 0.00 0.09 
3 0.16 0.02 0.00 0.02 -0.12 0.01 0.00 0.01 
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OSU/GeoCue Interface

GeoCue provides access to data from their environment (general LiDAR 

project management, import/export data, visualization/editing, point 

measurements, etc.)

The communication between GeoCue and OSU is defined by the FMAS 

(Feature Matching and Adjustment System) protocol description.

OSU linear feature extraction module is called from GeoCue

Command line executable is provided by OSU

Parameter passing is via XML format, including GPS-surveyed 

coordinates of the linear features, and their equivalent (virtual LiDAR 

points) determined by OSU

The workflow is designed to seamlessly integrate manual and automated 

(OSU) feature extraction and matching

The analysis of the transformation results is performed in the GeoCue 

environment

If the correction of LiDAR data is needed, it will be executed in batch mode 

in GeoCue 
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Conclusion

Using pavement markings as ground control should

Improve both horizontal and vertical accuracy of the LiDAR data

Provide a measure of the horizontal accuracy

Result in shorter processing time that translates into faster delivery 
of the data to the end user

Decrease, or eventually eliminate, the need for using LiDAR-
specific ground targets in the vast majority of the projects, and 
thus, increase safety and efficiency of the survey personnel 

Improve the in-house understanding of the overall LiDAR data 
error budgets, and thus, help to advance ODOT mapping 
requirement and specification developments, and 

Result in reduced cost not only within map production, but for the 
users of the LiDAR data; the accuracy of the surface data will be 
better

84



Airborne LiDAR Reflective Linear Feature Extraction for Strip Adjustment and Horizontal Accuracy Determination   
 

 

 

APPENDIX C 
 

FMAS Interface Design 
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GeoCue 
 FMAS GeoCue 

Interface 
 

Revision 2.0  April 15, 2007 
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2 Introduction 
 
The Office of Aerial Engineering (OAE) of the Ohio Department of Transportation 
(ODOT) is contracting with The Center for Mapping, Ohio State University (OSU) to 
develop LIDAR1 Feature Matching Algorithms (FMA) for use in analyzing the relative 
and absolute horizontal accuracy of LIDAR data and performing subsequent adjustments 
based on these analyzes.  While the algorithms can be generalized to full three 
dimensional analysis, the work associated with this project will be restricted to horizontal 
analysis and adjustment. 
 
The Office of Aerial Engineering uses the commercial software package GeoCue with the 
application module, LIDAR 1 CuePac, as the data and algorithm management system for 
its LIDAR production operations.  The OAE has contracted with GeoCue Corporation to 
have the Feature Mapping Algorithms integrated into their existing GeoCue LIDAR 
processing system to facilitate the use of these new algorithms directly and efficiently in 
day-to-day LIDAR production.   
 
 

2.1 Overview of the Integration Concept: 
 
GeoCue is a general purpose geospatial workflow management system that is designed to 
accommodate software tools from disparate vendors, integrating these tools into a 
common enterprise environment.  It is an integration framework that provides high level 
features such as: 

• Graphical display of processing elements (such as LIDAR sources, image 
data, etc.) 

• Distributed file management 
• Multiuser data access control 
• Production auditing 
• Dispatched/distributed processing of certain commands 
• Checklist-driven production 
• Direct user modification of workflow steps 

 
The OAE uses GeoCue as the workflow manager for LIDAR data processing, data 
analysis and derivative product generation such as LIDAR orthos.  The new LIDAR 
Feature Matching Algorithms are to be integrated into the existing workflow such that 
they can be seamlessly used by production operators from the GeoCue user interface.  
Figure 1 depicts the GeoCue interface showing an OAE LIDAR project in Ashtabula 
County, Ohio. 
                                                 
1 Note that GeoCue consistently uses LIDAR (rather that LiDAR or lidar) as the acronym for Light 
Detection and Ranging.  This is based on the fact that the original acronym for Radio Detection and 
Ranging was RADAR, not RaDAR. 
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Figure 1 LIDAR project in GeoCue 

 
The integration concept is to design a generalized interface within GeoCue that the 
researchers at the Center for Mapping can use to design the Feature Matching Algorithm 
interface.  The second stage of development will be the integration and testing of the 
integrated system at both the Center for Mapping and the OAE. 
 
The end result of this work will be a system that: 

• Facilitates measuring horizontal control in LIDAR intensity images 
• Generates statistical reports of the goodness of fit 
• Provides the user the ability to adjust the LIDAR data horizontally to 

minimize the fit residuals2 
 

2.2 The GeoCue Implementation Concept 
 
Our approach to the integration task is to work closely with personnel at the Center for 
Mapping to mutually design a generalized interface for the OAE GeoCue system that will 
allow rapid integration of the Feature Matching Algorithms.  The interface will be such 
that it can accommodate changes to software developed by the Center for Mapping 
without requiring further custom modifications to the core GeoCue software.   
 

                                                 
2 As a matter of convenience, we will also include the ability to perform an absolute Z shift when applying 
the horizontal adjustments to the LIDAR data. 
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We will package the resultant GeoCue components of the software as a Commercial off 
the Shelf (COTS) “CuePac”, thus meeting the OAE’s requirement to support the resultant 
software under standard commercial software maintenance practices. 
 

2.3 Summary of the GeoCue SOW Tasks 
 
GeoCue has been generally tasked with the following items under our components of the 
project:  
 

1. We will conduct an on-site visit at either the Center for Mapping or the Office of 
Aerial Engineering (TBD) to develop the overall project plan.  This initial 
meeting will be held as quickly as possible following authority to proceed3.   

2. We will provide a preliminary Project Schedule within 45 days of authority to 
proceed. 

3. We will develop a design concept for the generalized GeoCue program interface 
to be used in integrating the Feature Matching & Adjustment System (FMAS).  
This design concept will be reviewed with Center for Mapping staff and accepted 
comments will be incorporated into the design4. 

4. We will take delivery of previously developed algorithms from the Center for 
Mapping to use as sample code for testing the GeoCue generalized program 
interface. 

5. We will deliver an Initial Operational Capability (IOC) software delivery to the 
Center for Mapping that contains the generalized interface.   

6. We will incorporate feedback from Center for Mapping personnel regarding the 
IOC delivery into a Final Operational Capability (FOC) system. 

7. We will accept the initial delivery of the Feature Mapping & Adjustment System 
from the Center for Mapping and integrate these algorithms into the GeoCue 
system. 

8. We will deliver the integrated product to the Center for Mapping and provide 
installation assistance via telephone conferencing.   

9. We will incorporate feedback from the Center for Mapping into the final software 
version. 

10. We will deliver the integrated software package to the Office of Aerial 
Engineering and provide the workflow portions of training (the Center for 
Mapping will provide algorithm use training).  This will be a two day trip to the 
OAE. 

 
 
 

                                                 
3 This meeting was held on April 12, 2007 at the Center for Mapping, OSU. 
4 This document 
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3 System Concept Overview 
 
The general concept behind the Feature Matching and Adjustment System (FMAS5) is to 
use LIDAR return intensity images to extract two dimensional linear features.  These 
extracted features are correlated with the LIDAR source strips (e.g. if the system is in 
strip extract mode, then feature k can be associated with Strip n).   Externally collected 
control features are fed to the algorithms as targets.  Much as in aerial imaging block 
bundle adjustments, features that tie between strips can be used for relative adjustments 
whereas external control features can be used for absolute adjustment.  While the 
algorithms developed by CFM can, in theory, be used for full three dimensional feature 
extraction and subsequent sensor modeling, this project will limit the implementation to 
detecting horizontal deviations and minimizing those deviations by horizontally adjusting 
the LIDAR data. 
 
The OAE has an existing workflow procedure for relative adjustment using the 
Terrasolid6 product, TerraMatch.  TerraMatch, in concert with the LIDAR editing 
program TerraScan, provides capabilities for relative adjustment of LIDAR flight lines7 
as well as absolute vertical adjustments.  It does not provide tools for absolute horizontal 
accuracy assessment and adjustment.  
 
We recommend a two phase approach where the first phase introduces external control 
for absolute horizontal accuracy assessment and correction but uses interactively 
collected match features for analysis and adjustment.  The second phase will add the 
automatic feature extraction algorithms being developed by the CFM.  We are 
recommending this approach because the OAE has a desire to rapidly deploy a horizontal 
assessment/adjustment tool.  This two phase deployment will allow OAE to deploy an 
interactive system early in the project and add the automatic feature extraction algorithms 
into the production flow when they become available. 
 
The first phase deployment will include algorithms to match (conflate) hand-digitized 
image recognizable linear features8 to externally provided control.  The horizontal errors 
between the measured features and the control features are then used to set parameters of 
an adjustment algorithm (12 parameter transform with Z held fixed).  Finally, this 
adjustment algorithm is applied to the LIDAR data to effect a correction.  The application 
of the adjustment will be encoded in GeoCue to allow us to take advantage of distributed 
processing. 
 

                                                 
5 We are not attempting to name the system – this is a place holder for this document. 
6 Terrasolid OY, Helsinki, Finland (www.terrasolid.com) 
7 Most TerraMatch adjustments are on a pre-flight line basis.  There is one adjustment that operates intra-
line. 
8 While our emphasis is on linear features we believe the system should also include a provision for 
signalizing LIDAR data with targets.  These features would be polygons or attributed points. 
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The second phase of the project will incorporate automatic detection of match features to 
a set of control features by the CFM algorithms. 
 
There are, of course, a number of issues and questions associated with these steps that 
will have to be decided.  An initial discussion of these is provided in a separate section of 
this document.   
 
An overview of the envisioned processing is contained in the following sections.   
 

3.1 Mission Planning 
 
The first step in a project is planning the data collect.  Note that this includes both the 
plan for aerial data acquisition (flying the LIDAR unit) as well as planning the collection 
of ground control.  If the project is to be signalized then the location and schedule for 
target panels must also be considered. 
 

3.2 Data Acquisition 
 
Data acquisition involves actually flying the LIDAR mission as well as collecting the 
planned ground control.  Note that some projects may include signalized control.  In this 
case targets must be placed prior to data collection.  Surveying of control does not, of 
course, have to be done prior to the LIDAR acquisition but, in the case of targets, should 
be accomplished in a timely enough manner to reduce the risk of target disturbance 
between aerial acquisition and control acquisition. 
 
Some examples of linear features that can be used for the FMAS are depicted in Figure 2.  
Note that part of this project will be devising a canonical method of encoding the 
descriptions of linear features.   

94



GeoCue 
 FMAS GeoCue 

Interface 
 

Revision 2.0 Page 9 of 34 April 15, 2007 
 

 
Figure 2 Linear Feature Examples9 

 
 

3.3 Initial Geocoding 
 
Initial geocoding is the processing of raw laser pulse and time data to X, Y, Z tagged 
points.  The processing is generally: 
 

1. Reduction of GPS/IMU data (OAE uses the Applanix application POSPac for this 
process).  This produces a Trajectory data set10. 

                                                 
9 From John Ray’s notes from the 24 January 2007 meeting at ODOT 
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2. Ensuring sensor calibration data are correctly set (lever arms, etc.) 
3. Correlating/interpolating the Trajectory data to the time encoded laser data pulses 

to form a geocoded point cloud.  Since OAE uses an Optech LIDAR unit, this 
process is conducted using the Optech proprietary software package REALM.  
These data are output in an industry standard file format (LAS), with one flight 
line per data file. 

 

3.4 Project Data Adjustment 
 
In the current OAE workflow, the LIDAR data are next checked (and adjusted, if 
necessary) for geometric accuracy using the Terrasolid package, TerraMatch.  
TerraMatch relies on vertical data for detecting data “block” anomalies but the 
adjustments are made in all three dimensions (X, Y and Z).  TerraMatch uses a modeling 
approach rather than heuristic approach to data adjustment in that it incorporates a 
generalized sensor model of the LIDAR system.  A heuristic system would simply 
attempt to adjust data based on a generalized mathematical model such as rational 
functions. 
 
Figure 311 depicts a profile view of four overlapping LIDAR flight lines (each line being 
shown in a different color).  Note that if the flight direction were from left to right, the 
major anomaly being depicted would be a pitch error (typically caused by a lever arm 
parameter error).  Figure 4 shows the effect of corrections to the data. 
 

 
Figure 3 An uncorrected LIDAR profile 

 

                                                                                                                                                 
10 For an Applanix system, this is a Smoothed, Best Estimated Trajectory (SBET) data set in the form of a 
disk resident file. 
11 A number of the figures in this section are taken from Terrasolid training material. 
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Figure 4 After correction 

 
 
Figure 5, Figure 6 and Figure 7 depict the typical sequence of correcting a LIDAR lift 
using TerraMatch.  Figure 7 depicts the relative Z correction of strips following 
correction for other factor (roll, pitch, yaw, etc.).  Note that a final step is applied to the 
data in which all strips are corrected for absolute Z.  This requires being able to identify 
at least 1 control point in the project. 

 
Figure 5 General multi-strip mission 

 

 
Figure 6 Roll Correction 
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Figure 7 Strip-wise Z correction 

 
 
Note that after the above procedures have been applied, the data can still have a bias in X 
and Y (horizontal shift).  Detecting and correcting such a potential horizontal shift is the 
crux of the FMAS. 
 
It should be noted that, like aerial block adjustment algorithms, TerraMatch relies on 
overlapping data from multiple flight lines to measure anomalies in the geometry of the 
LIDAR data.  Unfortunately, the strong component of measurement is in LIDAR strip 
side lap.  While this works quite well for area projects, it can be a problem for the 
corridor flight patterns typical of transportation work.   
 

3.5 FMAS Flow 
 
This is the new section of processing that is used to measure and correct for horizontal 
shifts in the data.  Whereas the corrections made using TerraMatch rely primarily on 
profile views of overlapping LIDAR data, the FMAS will rely primarily on LIDAR 
intensity.  An example of a LIDAR intensity image is depicted in Figure 8. 
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Figure 8 LIDAR Intensity example 

 
The general idea with FMAS is to compare known control features to LIDAR Intensity 
Image identifiable features.  This is depicted (simulated) in Figure 9.  Here the control 
(known measured feature) is shown as a yellow line.  The matching LIDAR feature is the 
white line along the edge of pavement.  This simulation shows that the LIDAR data are 
horizontally shifted up and to the left.  In other words, if the LIDAR data were shifted 
down and to the right, the edge of pavement feature in the LIDAR data would overlie the 
control line. 
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Figure 9 Simulation of a linear feature for FMAS 

 
The general flow for FMAS will be (all interactive operations are performed within the 
GeoCue Client Map View interface): 
 

1. Generate LIDAR orthos 
2. Import control features such that they display in the GeoCue Map View 
3. Manually inspect each feature to ensure that a conjugate feature is present within 

the LIDAR data.  (optionally) Remove features that are inappropriate for 
matching. 

4. Pass control features to CFM algorithm for automatic extraction from the LIDAR 
Intensity Image.  Note that GeoCue will also pass LIDAR patches that are 
bounding boxes of LAS data that enclose the feature. 

a. Alternatively, a user could interactively digitize match features using 
GeoCue. 

5. Receive back from CFM algorithms a set of conjugate feature definitions (one per 
intersecting strip) and goodness of fit parameters. 

6. Graphically depict the conjugate features in the GeoCue Map View 
7. Call a (CFM supplied) conflation algorithm that matches image derived features 

to the control features and provides fit statistics. 
8. Provide a tabular list of the “goodness of fit” parameters (residuals) 
9. Allow the user to compute the components of a fit matrix 
10. Compute fit residuals in the statistics table 
11. Allow user to iterate through the withhold, fit steps. 
12. Apply corrections to the actual LIDAR data 
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3.6 Downstream Processing 
 
Downstream processing is the normal TerraScan (or similar application) editing and 
product generation. 
 
 

3.7 Summary 
 
Note in the above scheme that the horizontal adjustment process slots into the current 
GeoCue workflow.  In fact, a user could elect, based on a manual inspection, to bypass 
either vertical adjustment, horizontal adjustment or both. 
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4 Detail of Processing Steps 
 
This section provides the initial details of the FMAS.  It will be further definitized in 
detailed design notes. 
 

4.1 Control Feature Design (GeoCue, OAE) 
 
GeoCue and OAE will develop a standard for encoding the features to be used in FMAS.  
This will probably be an ASCII encoded text file12 containing the information listed in 
Table 1.  Note that we also need to handle targets.  We will probably reserve special 
feature codes for targets that reference a target library. 
 

Table 1 Feature Coding 
Feature ID Parent ID Feature Code Coordinates Notes 
A unique integer 
that identifies this 
feature 

The feature ID 
of the parent 
feature if this is 
a child feature 
(0 if this is the 
top of the tree) 

A text string (e.g. 
CURB) or a coding 
number to indicate 
the feature type 

X,Y coordinate pairs 
that are in 
topographical order 

 

 
 
 

4.2 Control Feature Import and Display 
 
A new command will be written for the FMAS GeoCue environment to import the 
control features.  This import will create entities in GeoCue that will contain database 
attributes of the feature definitions.  Users will be able to modify the display symbology 
of the features using the Symbology tool in Environment Builder.   
 
 

4.3 Digitize Conjugate Features 
 
Digitize conjugate (match) features will allow a user to digitize, from the GeoCue Map 
View, features in the LIDAR ortho image that match the input control features.  This 
mode allows manual collection of features for generating matching statistics.  This will 
be useful for the phase I deployment (prior to integration of the CFM feature extraction 
code) and for cases in which the automatic feature matching algorithms fail.   
 

                                                 
12 We would prefer XML but this would require new workflows for the survey group of OAE. 
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This capability will function as: 
1. The user digitizes a feature 
2. The user links13 the newly digitized feature to its control conjugate 
3. A checklist step is executed on the digitized feature that attributes the feature 

based on its linked control feature 
 

4.4 Extract Conjugate Features (Phase II) 
 
The Locate Conjugate Features step passes the control features along with LAS 
extractions to the CFM automatic feature extraction routine.  The Feature Extraction 
algorithms extract control conjugate features from these LAS data sets. 
 
The Locate Conjugate Features function will operate in two modes: 

1. Extract from LIDAR flight line 
2. Ignore flight lines 

 
The LAS data structure contains a Source ID field that is used to identify the source of 
each point within the LAS point cloud.  When the data are first generation merged data 
from LIDAR flight lines, the Source ID represents the flight line number.  In the flight 
line extraction mode, the extraction code will treat each flight line independently, 
providing an extracted feature per Source ID.  This mode is used to enable relative 
horizontal accuracy analysis. 
 
In the ignore flight line mode, the extraction algorithm will not differentiate between 
flight lines, treating an LAS source as homogeneous.  This mode is used when relative 
accuracy is not needed or when the density of the LIDAR data is not sufficient, when 
used in single strip mode, to support feature extraction. 
 
Note that we have divided the feature extraction operations into two distinct executable 
programs; Extraction and Conflation.  This differentiation allows the same conflation 
code to be used regardless of the source of the extracted features (interactive digitizing or 
automatic feature extraction). 
 
The general feature extraction sequence is as follows: 
 

1. Linear features are extracted from the LIDAR data using well known image 
extraction techniques.  These features would have to be encoded as to the source 
ID (SID) of the LIDAR flight line from which they originated.  We assume that 
the resultant features would be hierarchically connected (Figure 10).  These 
algorithms would function totally within the CFM segments of code.  The 
techniques for actual feature extraction will be documented by CFM and thus are 
not part of this design concept document. 

                                                 
13 GeoCue contains an associativity system that will be used for this operation 
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Figure 10 Composite Linear Feature 

 
2. The CFM feature extraction code will pass back to the GeoCue: 

a. Composite line definitions 
b. Adjustment parameters for each flight line 
c. Residuals 

3. GeoCue will display the extracted line segments.  We assume that these would be 
feature coded in some manner as to type of feature (center line stripe, edge of 
pavement and so forth) 

 

4.4.1 Interface 
 
The interface to the feature extraction routine will be via command line.  The exact 
specification will be defined in a design note but the general format will be: 
 
ExtractFeatures 

-s This flag indicate strip-wise extraction.  If 
not present, extraction will be aggregated 

-l “Control library path” Full path to the control feature library 
-i ”LAS input path” Full path to the input LIDAR data (LAS 

files).  May be repeated n times where n is 
the number of LAS files from which to 
extract features 

-c ”control path” Full path to a control feature definition file 
-o ”output path” Full path to the location/filename for the 

output feature(s) 
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Note that our scheme is to call the function (actually an executable program) for each 
feature rather than to pass a collection of features.  This method will allow distributed 
processing of the extraction process. 
 

4.4.2 Input Data 
 
The input data are defined in Table 2: 
 

Table 2 Extract Features Input Data 
Data Mode14 Format  Notes 
Control 
Feature 
Library 

R XML (content to be 
defined by GeoCue and 
OAE) 

This file contains the definitions 
of all of the standard features used 
within the FMAS project.   

LIDAR data 
files 

R LAS 1.0 This is an extraction of project 
data in a buffered region 
surrounding the control feature.  
The size of the buffer is defined 
in the Control Feature Library.  If 
more that one file is passed, the 
CFM code must merge the files 
prior to extraction. 

Control 
Feature file 

R XML – format to be 
determined by GeoCue and 
CFM 

This file defines the specific 
instance of a control feature that 
is to be extracted from the LAS 
data. 

 
 
 

4.4.3 Output Data 
 
The input data are defined in Table 3 
 

Table 3 Extract Features Output Data 
Data Mode Format  Notes 
Extracted 
Feature file 

C XML – format to be determined by 
GeoCue and CFM 

This file contains the 
extracted feature(s) 

 
The extracted feature will contain both the feature definition (for example, the X, Y, Z 
coordinates of nodes) as well as the goodness of fit statistics.  For example, if the 
extracted feature were a line string composed of a set of X, Y, Z coordinates, the output 
would also include the variance of each node as well as the overall fit statistics.   

                                                 
14 C = Created by this function (implies Write), W = Write access, R = Read access 
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Note that the process of matching an extracted feature to a control feature will be 
available as a separately callable CFM routine.  This Conflation routine (see next section) 
will allow the FMAS to use digitized features in lieu of automatically extracted features 
for generating horizontal fit statistics. 
 
The format of the extracted feature data are to be determined by GeoCue and the Center 
for Mapping.  Some general ideas are discussed in the following chapter. 
 
 

4.5 Conflation 
 
In general, conflation is the process of merging data sets from multiple sources where the 
features to be merged generally are not identical.  This is a common operation for 
merging high resolution map insets into a lower resolution map and maintaining correct 
topography.  The process involves matching two sets of features where the geometry of 
the match features is not the same. 
 
In the FMAS, conflation refers to the process of matching extracted features to control 
features through a solid body transformation (TBD).  The result (output) of the conflation 
is a set of matching transformations as well as the fit statistics. 
 
It is important to note (and this may entail additional discussions between CFM and 
GeoCue) that we consider the process of statistically extracting a conjugate feature and 
the conflation process to be two distinctly separate operations with different sets of 
statistics.  In the case of feature extraction, the returned statistics may mean how well the 
extracted raw feature data (say intensity pixels) map to a predefined geometric shape (for 
example, a curve).  This is illustrated in Figure 11.  Note that the location of the control 
feature did not come into play in this segment of modeling, only the characteristic of the 
feature.  Thus the statistics here would mean how well the extracted pixels match the 
geometric constraint of the control feature. 
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Extracted Pixels

Feature Model 

 
Figure 11 Fitting to a feature model 

 
 
Figure 12 illustrates the conflation process.  Here an extracted conjugate feature is being 
matched to the control feature.  The statistics on this fit are quite different that those 
associated with the actual feature extraction.  Here the statistics relate to the goodness of 
fit following a rigid body transformation (for example).   
 
 

Control Feature 

Extracted Feature 

 
Figure 12 Comparing the extracted feature to the control feature 
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4.5.1 Interface 
 
The interface to the conflation routine will be via command line.  The exact specification 
will be defined in a design note but the general format will be: 
 
Conflate 

-l  “Control library path” Full path to the control feature library 
-c ”control path” Full path to a control feature definition file 
-f ”feature path” Full path to the extracted feature file 
-o ”output path” Full path to the location/filename for the 

output file 
 
Note that our scheme is to call the function (actually an executable program) for each 
feature rather than to pass a collection of features.  This method will allow distributed 
processing of the conflation process. 
 

4.5.2 Input Data 
 
The input data are defined in Table 2: 
 

Table 4 Extract Features Input Data 
Data Mode Format  Notes 
Control 
Feature 
Library 

R XML (content to be defined by 
GeoCue and OAE) 

This file contains the 
definitions of all of the 
standard features used 
within the FMAS 
project.   

Control 
Feature file 

R XML – format to be determined by 
GeoCue and CFM 

This file defines the 
specific instance of a 
control feature that is to 
be conflated with the 
extracted feature 

Extracted 
Feature file 

R XML – format to be determined by 
GeoCue and CFM 

This file defines the 
specific instance of an 
extracted feature that is 
to be conflated with a 
control feature 
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4.5.3 Output Data 
 
The output data are defined in Table 5 
 

Table 5 Conflation Output Data 
Data Mode Format  Notes 
Conflation 
parameters 
and Statistics 

C XML – format to be determined by 
GeoCue and CFM 

This file contains the 
conflation parameters 
and fit statistics 

 
The format of the conflation data are to be determined by GeoCue and the Center for 
Mapping.  Some general ideas are discussed in the following chapter. 
 
 

4.6 Statistics Display, Generate Transformation Parameters 
 
GeoCue will provide a tabular display of the conflation statistics.  This display will allow 
a user to examine both relative and absolute horizontal fit residuals and withhold features 
from the fit operations.  This section of the FMAS will also generate the transformation 
parameters. 
 
FMAS will allow a global adjustment of the horizontal and vertical components of data 
via a 12 parameter transformation matrix as depicted in Table 6.   
 

Table 6 Global Adjustment Matrix 
C0,0  C0,1 C0,2 C0,3 
C1,0 C1,1 C1,2 C1,3 
C2,0 C2,1 C2,2 C2,3 
0 0 0 1 

 
For the FMAS system, all parameters in Z except the Z translation term (C2,3) will be 
zero.  The user interface will allow input of a constant Z shift.  This provides the ability 
to adjust the absolute vertical bias of the data set. 
 
The adjustment interface will be similar to the current Entity Manager interface (Figure 
13).   This interface has a two-way connection with graphics in the GeoCue Map View.  
Selecting in the Map View causes rows in Entity Manager to select and selecting rows in 
Entity Manager causes the associated graphic elements to become selected in the Map 
View.   
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Figure 13 Example List view in GeoCue 

 
 

4.7 Apply Transformation Parameters 
 
This final step in the FMAS flow applies the transformation of Table 6 to all LIDAR data 
in the project.  It will be possible to use the Command Dispatch System within GeoCue 
to distribute this processing across multiple processing nodes. 
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5 Issues/Discussion Points 
 
This section contains, in no particular order, a list of issues and discussion points that the 
FMAS team will have to decide. 
 

5.1 Processing Order 
 
The geometric correction of LIDAR data involves corrections in three dimensions.  The 
FMAS addresses horizontal corrections only.  This raises the question of processing 
precedence – is vertical corrected prior to horizontal or vice versa?  This is coupled with 
the next issue; the fact that horizontal and vertical are correlated.   
 
The FMAS implementation will that the data are fully adjusted relatively using 
TerraMatch (or some other tool) and then the horizontal corrections are applied using 
FMAS.  We also permit absolute Z to be adjusted as part of the FMAS transformation. 
 
 

5.2 Lack of Orthogonality between Horizontal and Vertical 
 
Obviously the horizontal and vertical components of adjustment of LIDAR data are 
highly coupled.  For example, a shift in X, Y or both moves a sample horizontally with 
respect to the measurement location.  If the terrain is not level, the Z accuracy is effected.  
Obviously the proper way to address this problem is a simultaneous adjustment of X, Y 
and Z using a rigorous sensor model.  This is just an observation – no action is required. 
 
 

5.3 Planimetric Dispersion 
 
The uncertainty of location of a LIDAR “point” is much larger in X, Y than in Z for near 
nadir returns.  This effect is caused by beam divergence.  The effect of this for LIDAR 
intensity images is similar to low pass filtering.  This means that the spatial resolution of 
the horizontal components of the LIDAR “pixel” will be limited regardless of increases 
in LIDAR coverage density.  The primary factors affecting spot size are flying height and 
off-nadir angle.   
 
The summary of this point is that beam divergence may provide an effective Ground 
Sample Distance of d for a given flying height that cannot be improved by increasing the 
scan rate of the sensor or decreasing the forward velocity of the sensor platform. 
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5.4 Feature Coding 
 
We think it will be very important to include feature coding in the system.  By this we 
mean the inclusion of attributes with the linear features.  The important attributes (at least 
initially) appear to be: 
 

5.4.1 Geometry 
 
Geometry indicates the geometric description of the feature.  It seems that we need to 
encode the basic geometry type (we think we should include: point, 2D line, 3D line and 
perhaps polygon for certain target panels).   
 

5.4.2 Feature Type 
 
Feature type is the name of the object physically represented by the feature.  Examples 
might be: 
 

1. Edge of Pavement 
2. Center line, single stripe 
3. Top of curb 
4. LIDAR Target, Type 205 

 
We can expand the attributes as needed.  It seems that it would be ideal to use existing 
DOT feature codes, if possible. 
 
 

5.4.3 Topology 
 
Topology provides the relationship of one feature to another.  We need this to identify the 
segments of the same parent feature in two or more LIDAR strips.  GeoCue contains an 
associativity system that can be used to accomplish this at the GeoCue level.  We will 
need to devise a simple coding scheme to convey this to the CFM routines. 
 
 

5.5 Data Formats 
 
Data format is how we convey information back and forth between the GeoCue sections 
of code and the CFM sections.  We propose the following: 
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5.5.1 Features 
 
Based on a meeting held on April 12, 2007 at the Center for Mapping, the feature 
definition scheme was changed from Shape to XML.  GeoCue will work with CFM to 
define the schema for these data.  The general content will be: 

• Descriptor (e.g. Line, Curve, Polyline, etc.) 
• Coordinates 
• Feature Code 
• Feature ID 
• Parent ID (0 if no parent is associated) 
• Statistics (e.g. if this is a control feature that has been RTK collected as point 

nodes, then the statistics are σx, σy, σz for each node) 
• Standard buffer zone  - if this is a control feature, the standard distance for a 

buffer for LIDAR data 
 

5.5.2 Image Data 
 
Tiled TIFF with tfw files 
 

5.5.3 LIDAR Data 
 
LAS 1.0.  Note that the LIDAR data passed to CFM algorithms will have mixed flight 
line data in each file.  Individual flight line can be determined on a per-point basis by 
LAS coding bits. 
 

5.5.4 Coordinate Systems 
 
While GeoCue will support a mixed configuration of coordinate systems within a project, 
we propose that features and image data be transformed to a common system (within 
GeoCue) prior to passing to the CFM algorithms. 
 

5.5.5 Metadata 
 
We propose passing metadata such as statistics tables as extensible markup language 
(XML) files with schemas defined by the project needs. 
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5.6 Software Interface 
 
GeoCue contains a generalized ability to call executable programs that use a scheme of 
command line parameters passed at invocation time, for example: 
 
Cmd.exe –r”801”, -if “\\Cyclops\data\histogram.xml”, -of “\\Ulysses\output\stats.xml”, 
… 
 
We recommend that all interfaces between GeoCue and the CFM algorithms be of this 
form.  This will allow the OAE to reconfigure the deployed system without the need to 
resort to programming. 
 

5.7 Distributable Architecture 
 
Wherever possible, executable programs should be designed such that they can 
participate in distributed (parallel) processing schemes.  Parallel processing can be 
completely handled by GeoCue if the executable program is designed such that it does 
not need to span operations across multiple entities. 
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6 Project Deployment and Schedule 
 
 
We recommend a multiphase deployment as recommend in Table 7: 
 
 

Table 7 Project Schedule 
Phase Capability Deliverables 
GeoCue I • Ability to import control 

features 
• Ability to digitize conjugate 

features 
• Ability to construct a set of 

transform statistics based on 
the conflation call to CFM 
code 

• Ability to apply a transform 
to the LIDAR data 

GeoCue FMAS CuePac, 
IOC 

CFM I • GeoCue-CFM Interface 
• Conflation algorithm 
• Passing (from CFM to 

GeoCue) a conflation results 
XML file 

CFM IOC 

CFM II • Ability to extract 2D linear 
conjugate features from 
LIDAR data based on a 
control feature 

 

CFM, GeoCue FOC 
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7 Summary 
 
In today’s LIDAR data processing as implemented at the OAE, the ability exists to: 
 

• Perform a quick assessment of relative LIDAR accuracy (GeoCue dZ images) 
• Perform a quick assessment of absolute Z accuracy if control are available 

(GeoCue Z Probe and/or TerraScan) 
• Perform a relative data adjustment in three dimensions (TerraScan) 
• Perform an absolute vertical data adjustment (TerraScan) 

 
The capability that is missing is the ability to assess and adjust the absolute horizontal 
accuracy of the LIDAR data.  The new GeoCue-CFM system will provide a solution to 
this deficit.  This capability will be delivered early in the project as a manual system.  It 
will be followed by the CFM algorithms to automatically extract conjugate features to the 
supplied control features.   
 
The delivered system will be fully integrated with the OAE workflow system that is in 
place today, minimizing the need for training outside of the operations of this inserted 
capability.  This means that the OAE can expect to be immediately productive with 
enhanced metric accuracy. 
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ACRONYMS 
 
AOI Area of Interest 
  
CC Custom Code 
CCB Configuration Control Board 
CFM The Center for Mapping (of the Ohio State University) 
CI Custom Integration (refers to setting up system components using 

Environment Builder) 
CIR Color Infrared – typically the NIR band, the Blue band and the 

Green band (i.e. the Red band of RGB is replaced by the NIR band). 
CM Change Management 
CORS Continuously Operating Reference Station 
CORS96 NAD83(CORS96) A version of the NAD83 reference system – has 

a direct mathematical mapping to ITRF 
COTS Commercial-off-the-Shelf 
CR Change Request 
  
DEM Digital Elevation Model – see DTM 
DSM Digital Surface Model – first surface (rooftops, trees, …) elevation 

model  
DTM Digital Terrain Model – typically a terrain model of bare earth 
  
ECO Engineering Change Order 
  
FMA Feature Matching Algorithms 
FMAS Feature Matching and Adjustment System 
FOC Final Operational Capability 
  
GPS Global Positioning System  
GUI Graphical User Interface 
  
IMS Inertial Measurement System – combines an IMU with a computer 

to provide an interpolated navigation system.  Applanix and Leica 
add a GPS receiver to reduce drift errors and provide X, Y, Z reset.  
These systems are called “Aided IMS” 

IMU Inertial Measurement Unit – provide roll, pitch, yaw and (usually) 
X, Y, Z accelerations.  

INS Inertial Navigation System – see IMU 
IOC Initial Operational Capability 
ITRF International Terrestrial Reference Frame 
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JPEG Joint Photographic Expert’s Group, a standards group for image 
compression.  Note: JPEG typically refers to the (old but most 
common) discrete cosine transform algorithm whereas JPEG2000 
refers to the (new) wavelet-based compression algorithm.  The two 
formats are not interchangeable. 

  
LL Lower Left 
LR Lower Right 
LUT Look-up Table 
  
MABR Minimum Area Bounding Rectangle – An MBR rotated such as to 

form the minimum area necessary to enclose an object by a rotated 
rectangle. 

MBR Minimum Bounding Rectangle (always aligned to the coordinate 
system) 

  
NAD North American Datum 
NIR Near-Infrared 
  
OAE Office of Aerial Engineering (of the Ohio Department of 

Transportation) 
ODOT Ohio Department of Transportation 
OSU The Ohio State University 
  
QC Quality Check 
  
RGB Red-Green-Blue 
RRDS Reduced Resolution Data Sets (same as Image Overviews or Image 

Pyramids) 
RTK Real Time Kinematic 
  
SID Source Identifier 
  
TEC Topographic Engineering Center (of the United States of America, 

Army Corps of Engineering) 
TIFF Tagged Image File Format 
TIN Triangulated Irregular Network (this is a generic term.  There is no 

common, interchangeable TIN standard) 
TR Trouble Report 
TTN Triangulated Topographical Network – A proprietary, closed 

Intergraph TIN format 
TTC Tonal Transfer Curve – a lookup table to convert n bit data to m 

data.  For example, to convert 12 bit per pixel image data to 8 bit per 
pixel image data.  These curves generally build in contrast and 
gamma correction. 
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UL Upper Left 
UR  Upper Right 
USACE United States Army Corps of Engineering 
  
WGS-84 World Geodetic System of 1984 
  
XML Extensible Markup Language 
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APPENDIX D 
 

Software Developments 
(Included only in the digital version) 

 
 

1. Matlab macros used to implement all the functions developed in this project 

2. CurveFitting, ICP and PavementExtraction Processing Software, User’s 
Manual 

3. Microsoft VC++ source code 

4. Java source code used to implement XML data conversion 
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D.1. Matlab code for pavement extraction 

 The basic program input and output definition is provided in Table A.1. 

 

Pavement marking extraction (PavMarkExtract_main) 

Input  LiDAR strip points 

 Control point 

 Boundary value 

 Threshold for residuals 

 Threshold for mean residuals 

 Intensity step 

Output  Selected Lidar pavement marking points 

Embedded macros/functions  BoundaryExtract.m 

 

Table D.1: Program input/output specification. 
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D.2. Matlab code for for ICP-based matching, curve fitting and QA/QC computation 

 The basic program input and output definition is provided in Table A.2. 

 

 

Main program (ICP_MAIN) 

Input  Control points 

 Extracted LiDAR pavement marking points 

Output  Transformation parameters between control points and 
extracted LiDAR pavement marking points: 

o  Local shift  

o Global shift  

o Rotation angles 

o Rotation matrix 3x3 

 Statistics: 

o Aposteriori dispersionmatrix of transformation 
parameters 

o Residuals: original and final, mean and standard 
deviation 

Embedded macros/functions  transform2D 

 iterative_adjustment_transform2D 

 curve_fit 

 ItCPmultiplecurves_measofconv_ends_checkrange_ 

 resolution_curve 

 search_np 

 eukldist 

 nearestpoint_ends_search_checkrange 

 pcf2 

 pcf2_controls_valueconstraint 

 pcf2_linearinterpolation 

 residuals 

 

Table D.2: Program input/output specification. 
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